tim so nguyen n de n2 +3n +3 chia hết cho 2n-1
1) Cho bieu thuc : A= 2n +1 /n-3 + 3n-5/ n-3 - 4n-5 /n-3
a)Tim so nguyen n de A nhan gia tri nguyen
b) Tim n de A la phan so toi gian
Cho A=n3+3n2+2n
a, CMR A chia het cho 3 voi moi so nguyen n
b, Tim gia tri nguyen duong cua n voi n<10 de A chia het cho 15
Cho A=n3+3n2+2n
a, CMR A chia het cho 3 voi moi so nguyen n
b, Tim gia tri nguyen duong cua n voi n<10 de A chia het cho 15
cho bieu thuc :A=2n+1/n-3+3n-5/n-3-4n-5/n-3.a, tim n de a nhan gia tri nguyen .b,tim n de a la phan so toi gian
cho bieu thuc :A=2n+1/n-3+3n-5/n-3-4n-5/n-3.a, tim n de a nhan gia tri nguyen .b,tim n de a la phan so toi gian
Cho A= n^3 +3n^2+2n
a)cm a chia het cho 3 voi moi so nguyen n
b)tim gtri n<10 de A chia het cho 15
cho bieu thuc:P= 2n+1/n-3 + 3n-5/n-3 + 4n-5/n-3
a) tim n de P nhan gia tri nguyen
b)tim n de P la phan so toi gian
tim cac so nguyen n de n^3 - 3n^2 - 3n -1 chia het n^2 + n +1
Lời giải:
$n^3-3n^2-3n-1=n(n^2+n+1)-4n^2-4n-1$
$=n(n^2+n+1)-4(n^2+n+1)+3=(n^2+n+1)(n-4)+3$
Với $n$ nguyên, để $n^3-3n^2-3n-1$ chia hết cho $n^2+n+1$ thì $3\vdots n^2+n+1$, hay $n^2+n+1$ là ước của $3$
Mà $n^2+n+1=(n+\frac{1}{2})^2+\frac{3}{4}>0$ nên:
$n^2+n+1\in\left\{1; 3\right\}$
$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$
Cho A = n3 + 3n3 + 2n.
a, Chung minh rang A chia het cho 3 voi moi so nguyen n.
b, tim gia tri nguyen duong cua n voi n < 10 de A chia het cho 15.