Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang Trần
Xem chi tiết
Ha Lh Dg Hi
25 tháng 10 2016 lúc 20:25

2S(ABC)=ha.a=hb.b=hc.c suy ra 1/ha+1/hb+1/hc=a/2S+b/2S+c/2S=1/2S .(a+b+c)=1/r(a+b+c) .(a+b+c) =1/r (đpcm) (vì 2S=r(a+b+c))

Vương Khả Thi
Xem chi tiết
Vương Khả Thi
Xem chi tiết
Hương Yangg
Xem chi tiết
daica
27 tháng 6 2016 lúc 21:54

thanghoa

No_pvp
12 tháng 7 2023 lúc 16:33

Mày nhìn cái chóa j

vuminhphuong
Xem chi tiết
Trần Tường Nguyên
Xem chi tiết
vu minh hang
Xem chi tiết
Phương Cát Tường
Xem chi tiết
Phạm Khánh Huyền
Xem chi tiết
Cô Hoàng Huyền
8 tháng 1 2018 lúc 14:14

A B C H K G

Vẽ tam giác ABC với các chiều cao tương ứng là AH, BK, CG.

Ta có \(\Delta AHC\sim\Delta BKC\left(g-g\right)\Rightarrow\frac{AH}{BK}=\frac{AC}{BC}\Rightarrow\left(\frac{AH}{BK}\right)^2=\left(\frac{AC}{BC}\right)^2=\frac{AC^2}{BC^2}\)

Tương tự \(\Delta AHB\sim\Delta CGB\left(g-g\right)\Rightarrow\frac{AH}{CG}=\frac{AB}{BC}\Rightarrow\left(\frac{AH}{CG}\right)^2=\left(\frac{AB}{BC}\right)^2=\frac{AB^2}{BC^2}\)

Ta có \(\frac{1}{AH^2}=\frac{1}{BK^2}+\frac{1}{CG^2}\Leftrightarrow\frac{AH^2}{BK^2}+\frac{AH^2}{CG^2}=1\Leftrightarrow\frac{AB^2}{BC^2}+\frac{AC^2}{BC^2}=1\Leftrightarrow\frac{AB^2+AC^2}{BC^2}=1\)

\(\Leftrightarrow AB^2+AC^2=BC^2\Leftrightarrow\) tam giác ABC vuông tại A.

Nguyễn Hồng Hạnh
Xem chi tiết
Trần Thùy Dương
23 tháng 10 2018 lúc 21:50

Gọi S là diện tích của tam giác

Ta có : 

\(a=\frac{2S}{h_a};b=\frac{2S}{h_b};c=\frac{2S}{h_c}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(a+b+c\right)\left(\frac{h_a+h_b+h_c}{2S}\right)\)

\(=\left(h_a+h_b+h_c\right).\frac{a+b+c}{2S}=\left(h_a+h_b+h_c\right)\left(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\right)\)

=> đpcm