Cho tam giác ABC nhọn, AB=c, BC=a,CA=b
chứng minh: \(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)
1Cho tam giác nhọn ABC , các đường cao AD,BE,CF. Chứng minh rằng: AF.BD.CE=AB.BC.AC.cosA.cosB.cosC
2Cho tam giác nhọn ABC ( BC=a , AC=b , AB=c) . Chứng minh rằng:
a)SABC =\(\frac{1}{2}\)b.c.sinA
b) \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Cho tam giác ABC nhọn có AB =c ,AC =b ,BC .
Chứng minh : a)
\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}.\)
b)\(S_{ABC}=\dfrac{1}{2}absinC=\dfrac{1}{2}bcsinA=\dfrac{1}{2}acsinB\)
Bài 2: Cho ΔABC vuông tại A
a) Chứng minh: \(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)
b) Chứng minh: \(BC^2=AB^2+AC^2-2.AB.AC.cosA\)
cho tam giác ABCcó đường cao AH AB =2a
cm
a hc=2a*sinB/tanC
b kẻ đường cao CK . tam giác ABC đồng dạng vs tam giác HBK
c 2SABC=AH*BC=AB*BC*sinC
Cho tam giác ABC vuông tại A có đg cao AH chia cạnh huyền BC thành hai đoạn :BH=4cm và HC=6cm.
a)tính độ dài các đoạn AH,AB,AC.
B)gọi M là trung điểm của AC.Tính số độ dài các đoạn BC,HB,HC,AH
C)kẻ AK vuông góc vs BM (K thuộc BM).Chứng minh :BK.BM=BH.BC
cho tam giác ABC nhọn có đường cao AH gọi E,F lần lượt là hình chiếu của H trên AB và AC. Cho góc C=30°,AC=8cm tính độ dài AH,HC. chứng minh AE.AB=AF.AC từ đó suy ra góc AEF = góc ACB gọi I là giao điểm của AB và FH, K là giao điểm của AC và EH chứng minh IH.IF+KH.KE=IK^2
Cho tam giác ABC vuông tại A có B=60, BC=6cm
a) Tính độ dài AB,AC
b)Kẻ đường cao AH của tam giác ABC .Tính HB ,HC
c) Trên tia đối của tia BA lấy D sao cho BD=DC.Chứng minh AB/BD=AC/CD
d)Từ A kẻ đường thẳng song song với phân giác CBD cắt CD tại K. Chứng minh 1/KD.KC =1/AC2 +1/AD2