cho a,b,c,d là các số nguyên dương thỏa mãn (a2+b2)/(c2+d2)=2017 chứng minh rằng a+b+c+d là hợp số
Cho 4 số tự nhiên khác 0 thỏa mãn: a2 + b2 = c2 + d2. Chứng minh rằng a + b + c + d là hợp số
Ta có : a2 + b2 = c2 + d2
⇒a2 + b2 + c2 + d2 = 2 ( a2 + b2 ) ⋮2 nên là hợp số
Ta có : a2 + b2 + c2 + d2 - ( a + b + c + d )
= a ( a - 1 ) + b ( b - 1 ) + c ( c - 1 ) + d ( d - 1 ) ⋮2
⇒a + b + c + d ⋮2 nên cũng là hợp số
Ta có: \(a^2+b^2=c^2+d^2\)
\(\Rightarrow a^2+b^2+a^2+b^2=a^2+b^2+c^2+d^2\)
\(\Rightarrow2\left(a^2+b^2\right)=a^2+b^2+c^2+d^2\)
\(\Rightarrow a^2+b^2+c^2+d^2\) là chẵn
Xét hiệu: \(a^2+b^2+c^2+d^2-a-b-c-d=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Mà tích 2 số TN liên tiếp là chẵn
⇒ Tổng a+b+c+d là chẵn
Vì \(a+b+c+d>2\) với mọi số TN a,b,c,d khác 0
⇒ a+b+c+d là hợp số
Cho a, b, c, d, q, p thỏa mãn p2 + q2 - a2 - b2 - c2 - d2 > 0. Chứng minh rằng : ( p2 - a2 - b2 )( q2 - c2 - d2 ) ≤ ( pq- ac - bd )2
Cho a, b, c là các số thực dương thỏa mãn a+b+c=3 Chứng minh rằng: a2 +b2 + c2 +ab+bc+ca >= 6
Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)
\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)
\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho a,b,c,d là các số tự nhiên thỏa mãn : đôi 1 khác nhau và a2+d2=b2+c2=t.
chứng minh ab+cd và ac+bd không thể đồng thời là số nguyên tố
Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.
Cho a,b,c,d thuộc Z.Thỏa mãn a+b=c+d.Mà a2+b2=c2+d2.Chứng minh a^2017+b^2017=c^2017+d^2017
Cho các số thực dương a,b,c thỏa mãn a+b+c=3
Chứng minh rằng abc(1+a2)(1+b2)(1+c2)≤8
Cần gấp ko bạn
Nếu gấp thì sang web khác thử
Cho a, b, c là các số dương thỏa mãn điều kiện 1 a + 1 b + 1 c ≤ 3 . Chứng minh rằng: a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ 3
Ta chứng minh BĐT
( a + b + c ) ( 1 a + 1 b + 1 c ) ≥ 9 ( * ) ( * ) < = > 3 + ( a b + b a ) + ( b c + c b ) + ( c a + a c ) ≥ 9
Áp dụng BĐT Cô – si cho hai số dương ta có:
a b + b a ≥ 2 b c + c b ≥ 2 c a + a c ≥ 2 =>(*) đúng
= > 9 a + b + c ≤ 1 a + 1 b + 1 c ≤ 3 = > a + b + c ≥ 3
Trở lại bài toán: Áp dụng BĐT Cô si cho hai số dương ta có 1 + b 2 ≥ 2 b
Ta có: a 1 + b 2 = a − a b 2 1 + b 2 ≥ a − a b 2 2 b = a − a b 2 ( 1 )
Tương tự ta có:
b 1 + c 2 ≥ b − b c 2 ( 2 ) c 1 + a 2 ≥ c − c a 2 ( 3 )
Cộng từng vế của (1), (2) và (3) ta có:
a 1 + b 2 + b 1 + c 2 + c 1 + a 2 ≥ a + b + c − 1 2 ( a b + b c + c a ) = > a 1 + b 2 + b 1 + c 2 + c 1 + a 2 + 1 2 ( a b + b c + c a ) ≥ a + b + c ≥ 3
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
Cho a, b, c, d là các số tùy ý thỏa mãn a+b+c+d=1. Chứng minh
a2+b2+c2+d2-2ab-2bc-2cd-2da≥- 1/4
Bên dưới có giải thích chi tiết rồi đó em:
Cho a, b, c, d là các số tùy ý thỏa mãn a+b+c+d=1. Chứng minh a2+b2+c2+d2-2ab-2bc-2cd-2da\(\ge\)- \(\frac{1}{4}\) - Hoc24
Cho a ,b,c là các số thực không âm thỏa mãn a2+b2+c2=1.chứng minh rằng: c/1+bc + b/1+ca + a/1+bc >= 1