x + (x+1) + (x+2) + ..... + (x+30) =1240
x+(x+1)+(x+2)+...+(x+30)=1240
Lời giải:
$x+(x+1)+(x+2)+....+(x+30)=1240$
$(x+x+...+x)+(0+1+2+...+30)=1240$
$31\times x+465=1240$
$31\times x=1240-465=775$
$x=775:31=25$
x + ( x+1) + (x+2) + ( x+3) +...+ (x+30)= 1240
\(x+\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+30\right)=1240\)
\(\Rightarrow31x+\left(1+2+3+...+30\right)=1240\)
\(\Rightarrow31x+\dfrac{\left(30+1\right)\left[\left(30-1\right):1+1\right]}{2}=1240\)
\(\Rightarrow31x+465=1240\)
\(\Rightarrow31x=775\)
\(\Rightarrow x=25\)
Vậy x = 25.
Tránh các giá trị x, ta lập dãy số:
1; 2; 3;...;30
Có 30 số hạng, tổng của dãy trên là: (1 + 30) x 30 : 2 = 465
Ta đặt lại biểu thức như sau:
X x 31 + 465 = 1240
X x 31 = 1240 - 465
X x 31 = 775
X = 775 : 31 = 25
x+(x+1)+(x+2)+...+(x+30)=1240
x+(x+1)+(x+2)+…+(x+30)=1240
=>x+x+1+x+2+x+3+…+x+30=1240
=>x+x+x+…+x+1+2+3+…+30=1240
Từ 1->30 có: (30-1):1+1=30(số)
=>31.x+(30+1).30:2=1240
=>31.x+31.15=1240
=>31.x+465=1240
=>31.x=1240-465
=>31x=775
=>x=775:31
=>x=25
Ta có :
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\)
\(\Rightarrow x+x+1+x+2+x+3+...+x+30=1240\)
\(\Rightarrow x+x+x+...+x+1+2+3+...+30=1240\)
x+(x+1)+(x+2)+...+(x+30)=1240
X+(X+1)+(X+2)+...+(X+30)=1240
=(X+X+...+X)+(1+2+...+30)=1240 (31 so X)
=31X+465=1240
=31X=775
=X=25
x+(x+1)+(x+2)+.........+(x+30)=1240
x\(\times\)31+1+2+3+.......+30=1240
x\(\times\)31+465=1240
x\(\times\)31=775
x=775:31
x=25
Vậy số cần tìm là 25
Tìm x, biết:
x+(x+1)+(x+2)+...+(x+30)=1240
`x+(x+1)+(x+2)+...+(x+30)=1240`
`=> (x + x + x + ... + x) + (1 + 2 + 3 +... + 30) = 1240`
`=> 31x + 465 = 1240`
`=> 31 x = 1240 - 465`
`⇒ 31x = 775`
`⇒ x = 775 : 31`
`⇒ x = 25`
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\\ \left(x+x+...+x\right)+\left(1+2+...+30\right)=1240\\ 31x+465=1240\\ 31x=1240-465\\ 31x=775\\ x=775:31\\ x=25\)
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=1240\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(1+2+...+30\right)=1240\)
\(\Leftrightarrow31x+465=1240\)
\(\Leftrightarrow x=25\)
x+(x+1)+(x+2)+(x+3)+........+(x+30)=1240
\(x+\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+30\right)=1240\)
\(\Rightarrow x+x+x+...+x+1+2+3+...+30=1240\)
\(\Rightarrow31x+\left(1+2+3+...+30\right)=1240\)
Số hạng là:
\(\left(30-1\right):1+1=30\) (số hạng)
Tổng là:
\(\left(30+1\right)\cdot30:2=465\)
\(\Rightarrow31x+465=1240\\ \Rightarrow31x=1240-465\\ \Rightarrow31x=775\\ \Rightarrow x=25\)
x+(x+1)+(x+2)+(x+3)+.....+(x+30)=1240
x.31 + (0+1+2+3+...+30)=1240
x.31 + 465=1240
x.31=1240-465
x=775 : 31
x=25
#Học tốt
x+(x+1)+(x+2)+(x+3)+.....+(x+30) = 1240
Số số hạng là :
x + 30 − x + 1 = 31 ﴾số hạng﴿
Tổng trên là :
x + 30 + x .31:2 = 2x + 30 .31:2 = 1240
⇒ 2x + 30 .31 = 2480
⇒2x + 30 = 80
⇒2x = 50
⇒x = 25
X ( x +1 ) + ( x + 2 ) + ... + ( x + 30 ) = 1240
x+(x+1)+(x+2)+....+(x+30)=1240
31 . x + (1 + 2 + 3 + 4 +...+ 29 + 30) = 1240
31 . x + 31.15 = 1240
31 . x = 1240 - 31.15
31 . x = 775
x = 775 : 31
x = 25