Cho hình thang vuông ABCD ( A=D=90 độ ). Biết AB =2 AD= √3 và B = 150 độ. Tính diện tích hình thang ABCD ?
Cho hình thang vuông ABCD ( A=D=90 độ ). Biết AB =2 AD= \(\sqrt{3}\) và B = 150 độ. Tính diện tích hình thang ABCD ?
Từ B kẻ BH⊥CD
→ABHD là hình chữ nhật
→SABCD=12⋅(2+5)⋅√3=7√3/2 cm2
Cho hình thang vuông ABCD ( AB//CD ) góc DAB=90 độ góc BCD =45 độ, AB=3cm, AD =4 cm
a, Tính góc B ?
b, Tính chu vi hình thang ABCD
c, Tính diện tích hình thang ABCD
Bài 2: Cho hình thang vuông ABCD,góc A = góc D =90 độ ; AB = 4cm; DC = 9cm, BC = 13cm.
a) Tính AD. b) Tính diện tích hình thang ABCD?
c) Gọi M là trung điểm của AD. Chứng minh tam giác BMC vuông.
a) -Qua B kẻ đường thẳng vuông góc với DC tại E.
-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)
\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\); \(AB=ED=4\left(cm\right)\)
-Xét △BEC vuông tại E:
\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)
\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)
\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)
\(\Rightarrow BE^2=13^2-5^2=144\)
\(\Rightarrow BE=AD=12\left(cm\right)\)
b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)
c) -Đề sai.
Cho hình thang vuông ABCD có góc A = góc D = 90 độ và đường chéo BD vuông với cạch BC. Biết AB= 2cm, AD= 4cm. Tính chu vi và diện tích của hình thang vuông
Xét tam giác ABD và tam giác BDC có:
\(\widehat{BAD}=\widehat{DBC}=90^o\)
\(\widehat{ABD}=\widehat{BDC}\) (Cùng phụ với góc \(\widehat{ADC}\) )
\(\Rightarrow\Delta ABD\sim\Delta BDC\left(g-g\right)\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow BD^2=\frac{AB}{DC}\)
Xét tam giác vuông ABD, áp dụng định lý Pi-ta-go ta có:
\(DB^2=AB^2+AD^2=2^2+4^2=20\)
Suy ra \(2=\frac{20}{DC}\Rightarrow DC=10cm\)
Xét tam giác vuông BDC, áp dụng định lý Pi-ta-go ta có:
\(BC^2=DC^2-BD^2=10^2-20=80\Rightarrow BC=\sqrt{80}\left(cm\right)\)
Vậy chu vi hình thang vuông bằng: 2 + 4 + 10 + \(\sqrt{80}=14+\sqrt{80}\left(cm\right)\)
Diện tích hình thang bằng: \(\frac{\left(2+10\right).4}{2}=24\left(cm^2\right)\)
Cho hình thang vuông ABCD có góc A =góc D=90 độ . AD=4 cm; DC=9cm;Ab=1/3 CD.
a)Tính diện tích hình thang ABCD
b)Kéo dài AD cắt Cb tại M.TÍnh diện tích tam giác ABM
diện tích hình thang abcd
theo công thức S=1/2h(a+b)
có ab=3cm(ab=1/3CD);Ad=4cm(Ad là chiều cao);DC=9cm
suy ra: S= 1/2 nhân 4(3+9)=24
1.Cho hình thang cân ABCD(AB//CD), góc BDC=45o. Gọi O là giao điểm của AC và BD.
a. CM tam giác DOC vuông cân
b. Tính diện tích của hình thang ABCD, biết BD=6cm
2. a. Tìm x của tứ giác ABCD, biết góc A=60 độ, góc C= 90 độ, góc D=63 độ
b. Cho hình thang ABCD(AB//CD). E,F lần lượt là trung điểm AD, BC. Tính độ dài đoạn thẳng EF, biết AB=3cm,CD=9cm
Cho hình thang ABCD có AB//CD góc A băng 90 độ hai đường chéo AC và BD vuông góc với nhau tại O biết AB=4cm , AD=10cm .Tính AC,BD,BC và diện tích hình thang ABCD .
Xét tam giác \(ABD\)vuông tại \(A\):
\(BD^2=AB^2+AD^2\)(định lí Pythagore)
\(=4^2+10^2=116\)
\(\Rightarrow BD=\sqrt{116}=2\sqrt{29}\left(cm\right)\)
Lấy \(E\)thuộc \(CD\)sao cho \(AE\perp AC\)
Suy ra \(ABDE\)là hình bình hành.
\(AE=BD=2\sqrt{29}\left(cm\right),DE=AB=4\left(cm\right)\).
Xét tam giác \(AEC\)vuông tại \(A\)đường cao \(AD\):
\(\frac{1}{AD^2}=\frac{1}{AE^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{AC^2}=\frac{1}{AD^2}-\frac{1}{AE^2}=\frac{1}{100}-\frac{1}{116}=\frac{1}{715}\)
\(\Rightarrow AC=\sqrt{715}\left(cm\right)\)
\(AE^2=ED.EC\Leftrightarrow EC=\frac{AE^2}{ED}=\frac{116}{4}=29\left(cm\right)\)suy ra \(DC=25\left(cm\right)\)
Hạ \(BH\perp CD\).
\(BC^2=HC^2+BH^2=21^2+10^2=541\Rightarrow BC=\sqrt{541}\left(cm\right)\)
\(S_{ABCD}=\left(AB+CD\right)\div2\times AD=\frac{4+25}{2}\times10=145\left(cm^2\right)\)
cho hình chữ nhật abcd.ab=42cm ad=30cm trên ab lấy 2 điểm mn sao cho am=1/4 ab an=bn.tính diện tích mncd
cho hình thang vuông abcd có ab=42cm ad=25cm dc=50cm.có góc a và góc d vuông và bằng 90 độ
-tính diện tích hình thang abcd
-tính diện tích hình tam giác abc
Cho hình thang vuông ABCD, góc A = góc D = 90 độ. AB=15cm, AD=20cm. Đường chéo AD cắt BD tại O. Tính:
a) OB,OD
b) AC
c)Diện tích hình thang ABCD
1.Cho hình chữ nhật abcd.ab=42cm,ad=30cm trên ab lấy 2 điểm mn sao cho am=1/4ab,an=bn.Tính diện tích mncd
2.Cho hình thang vuông abcd có ab=30cm,ad=25cm,dc=50cm.Có góc d vuông và bằng 90 độ:
-Tính diện tích hình thang abcd
-Tính diện tích hình tam giác abc