Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 11 2023 lúc 8:46

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

Phạm Quang Minh
Xem chi tiết
Nguyễn Bích Hà
26 tháng 8 2021 lúc 9:49

1.

Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:

+ Ví dụ 1. Các số 7; 9 và 2.

Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2. 

+ Ví dụ 2. Các số 13; 19 và 4. 

Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4. 

+ Ví dụ 3. Các số 33; 67 và 10.

Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10. 

Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán. 

Qua bài tập 6 này, ta rút ra nhận xét như sau: 

Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng. 

Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p. 

2.

Vì (a+b)⋮ma+b  ⋮  m nên ta có số tự nhiên k (k≠0)k≠0 thỏa mãn a + b = m.k (1)

Tương tự, vì a⋮ma  ⋮ m nên ta cũng có số tự nhiên h(h≠0)h≠0 thỏa mãn a = m.h 

Thay a = m. h vào (1) ta được: m.h + b = m.k 

Suy ra b = m.k – m.h = m.(k – h)  (tính chất phân phối của phép nhân với phép trừ).

Mà m⋮mm⋮m nên theo tính chất chia hết của một tích ta có   m(k−h)⋮mmk-h  ⋮  m

Vậy b⋮m.b  ⋮  m.  

Han Han
Xem chi tiết
Nguyen Thi Thu Huong
Xem chi tiết
Phạm Ngọc Thạch
2 tháng 7 2015 lúc 10:54

Xét n có dạng 3k;3k+1;3k+2 (k lớn hơn hoặc = 0)

     + Nếu n=3k thì n(n+4)(n+8) = 3k(3k+4)(3k+8) luôn chia hết cho 3.

     + Nếu n=3k+1 thì n(n+4)(n+8)=(3k+1)(3k+1+4)(3k+1+8)

 Vì 3k+1+8 = 3k+9=3(k+3) luôn chia hết cho 3 nên (3k+1)(3k+1+4)(3k+1+8) chia hết cho 3

     + Nếu n=3k+2 thì n(n+4)(n+8) có n+4 = 3k+2+4 = 3k+6 = 3(k+2) luôn chia hết cho 3.

 Vậy với mọi stn n thì tích n(n+4)(n+8) luôn chia hết cho 3

 

Đinh Tuấn Việt
2 tháng 7 2015 lúc 10:54

\(n\left(n+4\right)\left(n+8\right)=\left(n^2+4n\right)\left(n+8\right)=n^3+8n^2+4n^2+32n\)

\(=n^3+12n^2+32n=12n^2+n.\left(n^2+32\right)\)

Do n.(n2 + 32) luôn chia hết cho 3 và 12n2 chia hết cho 3.

Vậy n( n + 4 )( n + 8 ) chia hết cho 3 (đpcm)

Minh Hiền
2 tháng 7 2015 lúc 10:53

n(n+4)(n+8)=n.n(4+8)=2n(4+8). mà 4+8=12 chia hết cho 3 =>2n(4+8) chia hết cho 3. vậy tích n( n + 4 )( n + 8 ) chia hết cho 3 với mọi số tự nhiên n 

Bùi Nguyệt Hà
Xem chi tiết
nguyễn ánh hằng
13 tháng 11 2018 lúc 19:08

1)2n+5-2n-1

=>4 chia hết cho 2n-1

ước của 4 là 1 2 4

2n-1=1=>n=.....

tiếp với 2 và 4 nhé

TRỊNH THỊ QUỲNH
Xem chi tiết
Heartilia Hương Trần
30 tháng 9 2016 lúc 15:39

Thầy dạy bọn mày số nguyên tố và hợp số chưa

Bài này tao ko học

Khó nhỉ

Hiểu bài ko

Chế đang ngồi cắn bút

Chán quá lôi văn với GDCD ra làm

Tối nay đi học rồi

Lo quá, vẫn chưa la,f xong bài

Violet 6c
30 tháng 9 2016 lúc 16:10

dễ lắm. các em tự suy nghĩ và logic lên 1 tí là ra ngay à TRỊNH THỊ QUỲNH

Chúc em học tốt

 

ngophamquynh tram
Xem chi tiết
Nguyễn Thị Yến Nga
Xem chi tiết
Đỗ Vũ Nam
Xem chi tiết
Akai Haruma
19 tháng 8 2023 lúc 23:25

Bài 2:

Với $n$ chẵn thì $n+4$ chẵn

$\Rightarrow (n+4)(n+7)$ là số chẵn

Với $n$ lẻ thì $n+7$ chẵn

$\Rightarrow (n+4)(n+7)$ là số chẵn

Vậy $(n+4)(n+7)$ chẵn với mọi số tự nhiên $n$ (đpcm)

Akai Haruma
19 tháng 8 2023 lúc 23:27

Bài 3:

a. 

$101\vdots x-1$

$\Rightarrow x-1\in\left\{\pm 1; \pm 101\right\}$

$\Rightarrow x\in\left\{0; 2; 102; -100\right\}$

Vì $x\in\mathbb{N}$ nên $x=0, x=2$ hoặc $x=102$

b.

$a+3\vdots a+1$

$\Rightarrow (a+1)+2\vdots a+1$
$\Rightarrow 2\vdots a+1$

$\Rightarrow a+1\in\left\{\pm 1; \pm 2\right\}$

$\Rightarrow a\in\left\{0; -2; 1; -3\right\}$