Cho ΔABC có \(\widehat{A}\) = \(60^0\)
Vẽ các tia phân giác trong BD và CE cắt nhau tại D. Tia phân giác của \(\widehat{BDC}\) cắt BC tại I
Chứng minh OD = OE = OI
Cho \(\Delta ABC\) có \(\widehat{B}\) và \(\widehat{C}\). Vẽ tia phân giác \(\widehat{B}\) cắt AC tại D, vẽ tia phân giác \(\widehat{C}\) cắt AB tại E, BD cắt CE tại F. Chứng minh rằng:
a) BD = CE
b) \(\Delta BEF=\Delta CDF\)
c) AF là tia phân giác của \(\widehat{BAC}\)
B1 : Cho tam giác ABC có góc A = 60 độ . Tia phân giác trong góc B và góc C cắt Các cạnh đối diện tại D và E , BD và CE cắt nhau tại O. Tia phân giác của góc BOC cắt BC tại F.
Chứng Minh Rằng
a, OD=OE=OF
b, Tam giác DEF là tam giác đều
Cho tam giác ABC có góc A=60 độ .Kẻ tia phân giác BD,CE( E thuộc AB ;D thuộc AC)
BD và CE cắt nhau tại O. Tia phân giác của góc BOC cắt BC tại F.
Chứng minh rằng
a) OD=OE=OF
b)tam giác DEF là tam giác đều
cho tam giác ABC nhọn có góc A= 600. các đường phân giác của \(\widehat{B}\)và \(\widehat{C}\)cắt nhau tại O và cắt AC, AB lần lượt tại E, D. tia phân giác của \(\widehat{BOC}\)cắt BC tại F
a) tính \(\widehat{BOC}\)
b) chứng minh BD+CE=BC
c) chứng minh tam giác DEF đều
Cho ∆ABC có góc B = 60°, tia phân giác của góc BAC cắt BC tại D . Tia phân giác của góc ACB cắt AB ở E . AD và CE cắt nhau tại O Chứng minh rằng : a) góc ADC bằng 120° b) OE = OD
Cho tam giác ABC, góc A=60 độ. Tia phân giác trong của góc B và góc C cắt các cạnh đối diện tại D và E, BD và CE cắt nhau tại O. Tia phân giác của góc BOC cắt BC tại F. Chứng minh rằng: a))OD=OE=OF b) Tam giác DEF là tam giác đều
Cho tam giác ABC có góc A = 60 độ. Tia phân giác trong góc B và góc C cắt các cạnh đối diện tại D và E, BD và CE cắt nhau tại O. Tia phân giác của góc BOC cắt BC tại F.
a, OD = OE = OF
b, Tam giác DEF là tam giác đều
Cho cái hình đi bn....K có hình giải kiểu chi.
cho tam giác ABC, các tia phân giác của \(\widehat B \) và \(\widehat C\) cắt nhau tại I. Qua I kẻ đường thẳng song song với BC cắt AB ở D, cắt AC tại. Chứng minh DE=DB+CE.
Cho tam giác ABC có \(\widehat{A}=60^o\), kẻ tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB ở E. Qua A kẻ đường thẳng song song với CE, đường thẳng này cắt đường thẳng BC tại F.
a, Chứng minh rằng : \(\widehat{AFC}=\widehat{CAF}\)
b, Chứng minh rằng : \(\widehat{BDC}=\widehat{AEC}\)