cho M=a2 + 3a + 1 ( a>0)
Tìm a để M chia hết cho 5
Với giá trị nào của a thì M là lũy thừa của 5
Cho M=a2+3a+1(a∈N)
a) Chứng minh rằng Mọi ước của M đều là số lẻ
b)Tìm a sao cho M chia hết cho 5
c) Với những giá trị nào của a thì M là lũy thừa của 5
Cho \(M=a^2+3a+1\left(a\in N\right)\)
a) Chứng minh rằng Mọi ước của M đều là số lẻ
b)Tìm a sao cho M chia hết cho 5
c) Với những giá trị nào của a thì M là lũy thừa của 5
a) Giả sử ước của M là số chẵn thì \(M=2.k\Leftrightarrow a^2+3a+1=2k\)
Ta thấy \(a^2+3a+1=a\left(a+1\right)+2a+1\)
a(a + 1) là tích hai số tự nhiên liên tiếp nên chia hết cho 2. Vậy thì a(a + 1) + 2a chia hết cho 2.
Vì 2k chia hết cho 2, a(a + 1) + 2a cũng chia hết cho 2 nên 1 chia hết 2 (vô lý)
Vậy nên mọi ước của M đều là số lẻ.
b) Đặt \(a=5u+v\left(u\in N;0\le v\le4\right)\)
Khi đó \(M=\left(5u+v\right)^2+3\left(5u+v\right)+1\)
\(=25u^2+10uv+v^2+15u+3v+1\)
\(=\left(25u^2+10uv+15u\right)+v^2+3v+1\)
Để M chia hết 5 thì \(v^2+3v+1⋮5\)
Với \(0\le v\le4\), ta thấy chỉ có v = 4 là thỏa mãn.
Vậy \(a=5u+4\left(u\in N\right)\)
c) Để M là lũy thừa của 5 thì \(a=5u+4\left(u\in N\right)\)
\(\Rightarrow M=\left(5u+4\right)^2+3\left(5u+4\right)+1\)
Với n chẵn, a có tận cùng là chữ số 4. Vậy thì M có tận cùng là chữ số 9
Vậy không thể là lũy thừa của 5.
Với n lẻ, a có tận cùng là chữ số 9. Vậy thì M có tận cùng là chữ số 9
Vậy không thể là lũy thừa của 5.
Vậy không tồn tại số a để M là lũy thừa của 5.
đây là đề thi tuyển sinh lớp 10 chuyên trường PTNK-ĐHQG-TP.Hồ Chí Minh(vòng 2) năm 2013-2014 ak
cho P= a^2+3a+1 và a là số nguyên. Với giá trị nào của a thì P là lũy thừa của 5.
cho M=a+3a+1 với a là số nguyên dương
1,CMR mọi ước của M đều là số lẻ
2,Tìm a sao cho M chia hết cho 5.Với những giá trị nào của a thì M là lũy thừa của 5
cho M =a2+3a+1 với a là số nguyên dương
Tìm a sao cho M chia hết cho 5.Với những giá trị nào của a để M là luỹ thừa của 5
Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
\(M=a^2+ab+b^2-3a-3b+2001\)
\(\Rightarrow2M=2a^2+2ab+2b^2-6a-6b+4002\)
\(=\left[\left(a+b\right)^2-2\left(a+b\right).2+4\right]+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+3996\)
\(=\left(a+b-2\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+3996\ge3996\)
\(\Rightarrow M\ge1998\)
\(minM=1998\Leftrightarrow a=b=1\)
1 Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
2 Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
3 Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Câu 1. Tìm các số a, b, c, d biết rằng: a2 + b2 + c2 + d2 = a(b + c + d)
Câu 2. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của a và b thì M đạt giá trị nhỏ nhất? Tìm giá trị nhỏ nhất đó.
Câu 3. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Hãy giải ba câu hỏi này
Bài 2:
Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001
=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996
2M= ( a+b-2)2 + (a-1)2 +(b-1)2 + 3996
=> MinM = 1998 tại a=b=1
Câu 3:
Ta có: P= x2 +xy+y2 -3.(x+y) + 3
=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)
2P = ( x+y-2)2 +(x-1)2+(y-1)2
=> MinP = 0 tại x=y=1
Bài1:
Ta có: a2+ b2+c2+d2= a.(b+c+d)
=> a2+b2+c2+d2 -ab -ac -ad =0
=> 4a2+ 4b2+4c2+4d2-4ab -4ac -4ad=0
=> ( a2 - 4ab +4b2) + ( a2- 4ac + 4c2) +( a2 -4ad+ 4d2) + a2=0
=> ( a-2b)2 + ( a-2c)2 + (a-2d)2 + a2 =0
=> ....
KL: a=b=c=d=0
1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.
2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.
3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
4. Tìm liên hệ giữa các số a và b biết rằng: a b a b
5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8
6. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
7. Tìm các giá trị của x sao cho:
a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.
8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)
9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.
10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.
11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
bài 5 nhé:
a) (a+1)2>=4a
<=>a2+2a+1>=4a
<=>a2-2a+1.>=0
<=>(a-1)2>=0 (luôn đúng)
vậy......
b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:
a+1>=\(2\sqrt{a}\)
tương tự ta có:
b+1>=\(2\sqrt{b}\)
c+1>=\(2\sqrt{c}\)
nhân vế với vế ta có:
(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)
<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)
<=>(a+)(b+1)(c+1)>=8 (vì abc=1)
vậy....
bạn nên viết ra từng câu
Chứ để như thế này khó nhìn lắm
bạn hỏi từ từ thôi