Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mun toe
Xem chi tiết
Phước Nguyễn
18 tháng 4 2016 lúc 14:03

\(a.\)

Ta sẽ biến đổi biểu thức  \(B\)  quy về dạng có thể dùng được hằng đẳng thức  \(\left(x-y\right)\left(x+y\right)=x^2-y^2\), khi đó:

\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

                                                                                     \(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1\)

Vì  \(2^{16}>2^{26}-1\)  nên  \(2^{16}>\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

Vậy,  \(A>B\)

Tương tự với câu  \(b\)  kết hợp với phương pháp tách hạng tử, khi đó xuất hiện hằng đẳng thức mới và dễ dàng đơn giản hóa biểu thức \(A\). Ta có:

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

                                                                                \(=\frac{1}{2}\left(3^{64}-1\right)\left(3^{64}+1\right)=\frac{1}{2}\left(3^{128}-1\right)\)

Mặt khác, do  \(\frac{1}{2}<1\)  nên   \(\frac{1}{2}\left(3^{128}-1\right)<3^{128}-1\)

Vậy,  \(B>A\)

Nguyễn Thanh Nhàn
Xem chi tiết
Đặng Quang Diễn
29 tháng 8 2017 lúc 15:53

bài khó quá giải cũng dài luôn

Nguyễn Thanh Nhàn
29 tháng 8 2017 lúc 16:21

\(Ai\)\(giúp\)\(mình\)\(bài\)\(kia\)\(đi\)

La Huỳnh Mai Thảo
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Kudo Shinichi
30 tháng 9 2019 lúc 15:57

\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{22}+1\right)\left(3^{64}+1\right)\)

\(2A=\left(3^{64}-1\right)\left(3^{64}+1\right)\)

\(2A=3^{128}-1\Rightarrow A=\frac{3^{128}-1}{2}< 3^{128}-1=B\)

Vậy \(A< B\)

Chúc bạn học tốt !!!

Vũ Tiến Manh
30 tháng 9 2019 lúc 16:00

A.(32-1)=4.(32-1)(32+1)(34+1)...(364+1)=4.(34-1)(34+1)...(364+1)=  ...  =4.(3128-1)

<=>8A=4B <=>2A=B =>B>A

Lionel Messi
Xem chi tiết
Erika Alexandra
Xem chi tiết
Vũ Nga
Xem chi tiết
Trí Tiên亗
17 tháng 8 2020 lúc 21:43

bài 4 : c1 \(3^{4000}\)và \(9^{2000}\)

\(\Leftrightarrow9^{2000}\Leftrightarrow\left(3^2\right)^2^{000}\Leftrightarrow3^{4000}\)

vì \(3^{4000}=3^{4000}\Leftrightarrow3^{4000}=9^{2000}\)

c2 

ta có 

\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)

\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)

vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)

bài 5 

\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)

\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)

vì \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)

Khách vãng lai đã xóa
Xyz OLM
17 tháng 8 2020 lúc 21:43

3) M = 22010 - (22009 + 22008 + ....  + 21 + 20)

Đặt N = 22009 + 22008 + ....  + 21 + 20

=> 2N = 22010 + 22009 + .... + 22 + 21

=> 2N - N = (22010 + 22009 + .... + 22 + 21) - (22009 + 22008 + ....  + 21 + 20)

=> N = 22010 - 1

Khi đó M = 22010 - (22010 - 1) = 1

4) C1 Ta có 34000 = (34)1000 = 811000 = (92)1000 = 92000 

34000 = 92000

C2 Ta có : 34000 = (34)1000 = 811000 (1)

Lại có 92000 = (92)1000 = 811000 (2)

Từ (1) (2) => 34000 = 92000

5 Ta có 2332 < 2333 = (23)111 = 8111 < 9111 = (32)111 = 3222 < 3223

=> 2332 < 3223

2) Ta có n150 < 5225

=> (n5)75 < (53)75

=> n5 < 53

=> n5 < 125

Vì n là số nguyên lớn nhất => n = 2

Khách vãng lai đã xóa

5.

Ta có:\(2^{332}\)<\(3^{223}\)

=\(\left(2^3\right)^{111}\)=\(8^{111}\)

=\(3^{223}\)>\(3^{222}\)

=\(\left(3^2\right)^{111}\)=\(9^{111}\)

Ta có:8<9 ⇛:\(8^{111}< 9^{111}\)

vậy:\(2^{332}< 3^{223}\)

Khách vãng lai đã xóa
Lê Anh Tú
Xem chi tiết
minhduc
20 tháng 9 2017 lúc 20:34

a, 

A=1+3+32+33+34+35+36

=> 3A=3+32+33+34+35+36+37

=> 3A-A=(3+32+33+34+35+36+37)-(1+3+32+33+34+35+36)

=> 2A=37-1

=> A=37-1/2

Vì (37-1)/2   < 37-1 

=> A < B

b, C=1+2+22+...+22001+22002

=> 2C=2+22+23+....+22002+22003

=> 2C-C=(2+22+23+...+22002+22003)-(1+2+22+...+22002)

=> C=22003-1

Vì 22003-1 = 22003-1

=> C = D.

Lê Quang Phúc
20 tháng 9 2017 lúc 20:37

a) \(A=1+3+3^2+...+3^6\)

\(\Rightarrow3A=3+3^2+...+3^7\)

\(\Rightarrow3A-A=3+3^2+...+3^7-1-3-3^2-...-3^6\)

\(\Rightarrow2A=3^7+2\)

\(\Rightarrow A=\frac{3^7+2}{2}\)

Vì \(3^7-1>\frac{3^7+2}{2}\)=> A < B.

b) Câu này thì nhân C cho 2 và làm tương tự như câu trên nha.

kudo shinichi
20 tháng 9 2017 lúc 20:50

A=1+3+3^2+3^3+...+3^6

3A=3x(1+3+3^2+3^3+...+3^6)

3A-A=\(\left(3+3^2+3^3+...+3^7\right)-\left(1+3+3^2+...+3^6\right)\)

2A=3^7-1

A= \(\frac{3^7-1}{2}\)

\(\Rightarrow\)A<3^7-1 ( vì  \(\frac{3^7-1}{2}\)  <3^7-1) 

                          ( điều phải chứng minh)

C= 1+2+2^2+...+2^2001+2^2002

2C=2x( 1+2+2^2+...+2^2001+2^2002)

2C-C=(2+2^2+2^3+...+2^2002+2^2003)-( 1+2+2^2+...+2^2001+2^2002)

C=2^2003-1

\(\Rightarrow\)C=2^2003-1

              ( điều phải chứng minh)

bạn ơi bài này là bài toán dạng lũy thừa cơ bản nhất của toán nâng cao lớp 6. bạn học rồi sẽ biết.

Trần Hà Trang
Xem chi tiết
Phan Nghĩa
10 tháng 8 2020 lúc 16:21

Ta có : \(\hept{\begin{cases}A=1999.2001\\B=2000^2\end{cases}}\)

\(< =>\hept{\begin{cases}A=1999.2000+1999\\B=2000\cdot2000\end{cases}}\)

\(< =>\hept{\begin{cases}A=1999.2000+2000+1\\B=1999.2000+2000\end{cases}}\)

\(< =>\hept{\begin{cases}A=2000.2000+1\\B=2000.2000\end{cases}}\)

\(< =>A>B\)

Khách vãng lai đã xóa
Khánh Ngọc
10 tháng 8 2020 lúc 16:24

a. Ta có : \(A=1999.2021=\left(2000-1\right)\left(2000+1\right)=2020^2-1< 2020\)

\(\Rightarrow A< B\)

b. Ta có : \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

...

\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}\)

\(\Rightarrow A>B\)

c,d tương tự

Khách vãng lai đã xóa
Phan Nghĩa
10 tháng 8 2020 lúc 16:29

Ta có 

\(A=2011.2013=\left(2012-1\right)\left(2012+1\right)=2012^2-1\)

Mà \(B=2012^2\)

Suy ra \(B>A\)

Khách vãng lai đã xóa