Tìm 2 số khác 0 biết rằng tổng, hiệu, tích của chúng tỉ lệ với 5,1,12
Tìm 2 số khác 0 biết rằng tổng, hiệu, tích của chúng tỉ lệ với 5,1,12
Ta có: a+b/5=a−b=ab/12=k
Từ a + b = 5k và a - b = k ta được a = 3k, b = 2k
Thế vào ab = 12k ta được k = 2
Vậy hai số đó là 6 và 4
Gọi 2 số cần tìm là a và b ( điều kiện \(a\ne0;b\ne0\))
Theo bài ra tổng, hiệu, tích của chúng tỉ lệ với 5,1,12 :
Ta có :
\(\frac{a+b}{5}=\frac{a-b}{1}=\frac{a.b}{12}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a+b}{5}=\frac{a-b}{1}=\frac{a+b+a-b}{5+1}=\frac{2a}{6}=\frac{a}{2}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{3}=\frac{a.b}{12}\Rightarrow\frac{a}{a.b}=\frac{3}{12}\Leftrightarrow\frac{1}{b}=\frac{1}{4}\Rightarrow b=4\)
Thay \(b=4\)vào \(\frac{a+b}{5}=\frac{a-b}{1}\)ta được :
\(\frac{a+4}{5}=\frac{a-4}{1}\Leftrightarrow1\left(a+4\right)=5\left(a-4\right)\)
\(\Leftrightarrow a+4=5a-20\Leftrightarrow5a-a=4+20\)
\(\Leftrightarrow4a=24\Rightarrow a=6\)
Vậy 2 số cần tìm là \(a=6,b=4\)
Tìm 2 số khác 0 biết rằng tổng, hiệu , tích của chúng tỉ lệ với 5,1,12
giải chi tiết nhé rồi tick
Tìm hai số khác 0 biết tổng,hiệu và tích của chúng tỉ lệ với 5,1,12 ?
Tìm 2 số khác 0, biết tổng, hiệu, tích của chúng tỉ lệ với 5,1,12
(ghi rõ lời giải)
hai so do la a, b
tong/5 = hieu/1 = h/12 = (tong+hieu)/(5+1)=(tong-hieu)/(5-1)=a/3 = b/2 = a.b/12
a b khac 0 vay a = 6 b = 4
Tìm 2 số khác 0 biết tổng, hiệu, tích tỉ lệ với 5,1,12
A+B : [A-B] : A.B = 5:1:12
<=> {(A+B) : [A-B] = 5:1 (1)
(A+B) : A.B = 5:12 (2)
Giải trường hợp A-B>=0 :
(1) <=> A+B = 5A - 5B <=> A=(3/2).B (3)
Thế (3) vào (2) ta được 5/(B.3)=5/12 <=> B= 4 => A=6
Tương tự giải trường hợp A-B<0 ta được B=6 => A=4
Ta có: \(\frac{a+b}{5}\) =\(\frac{a-b}{1}\) = \(\frac{a+b+a-b}{5+1}\) =\(\frac{2a}{6}\)
=>\(\frac{ab}{12}\) =\(\frac{2a}{6}\)
=>\(\frac{ab}{12}\) =\(\frac{4a}{12}\)
=>ab=4a
=>b=4
Khi đó: \(\frac{a+4}{5}\) =\(\frac{a-4}{1}\)
=>(a+4)=(a-4).5
=>a+4=5a-20
=>24=4a
=>a=6
Vậy 2 số cần tìm là số lớn là 6 và số bé là 4
tìm 2 số khác 0 biết rằng ,tổng,hiệu,tích của chúng tỉ lệ với 4:1:45
Gọi hai số cần tìm là a và b (a,b≠0).(a,b≠0).
Theo đề bài, vì tổng, hiệu, tích của hai số đó tỉ lệ với 4 : 1 : 45 nên ta có:
a+b4=a−b1=ab45a+b4=a−b1=ab45 (1).
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
a+b4=a−b1=ab45=a+b+a−b4+1=2a5.a+b4=a−b1=ab45=a+b+a−b4+1=2a5.
⇒2a5=ab45⇒2a5=ab45
⇒2aab=545⇒2aab=545
⇒2b=19⇒2b=19
⇒b=2:19⇒b=2:19
⇒b=18.⇒b=18.
Từ (1), áp dụng tính chất dãy tỉ số bằng nhau ta được:
a+b4=a−b1=ab45=a+b−a+b4−1=2b3.a+b4=a−b1=ab45=a+b−a+b4−1=2b3.
⇒2b3=ab45⇒2b3=ab45
⇒2bab=345⇒2bab=345
⇒2a=115⇒2a=115
⇒a=2:115⇒a=2:115
⇒a=30.⇒a=30.
Vậy hai số cần tìm là: 3030 và 18.18.
Chúc bạn học tốt!
in loi nha hinh nhu no bi viet 2 lan ket qua la30 va 18
Tìm 2 số khác 0 biết rằng tổng, hiệu, tích của chúng tỉ lệ với 4 : 1 : 45
gọi số lớn là a,số nhỏ là b theo giả thiết có tỉ lệ:
\(\hept{\begin{cases}\frac{a+b}{a-b}=4\left(1\right)\\\frac{a-b}{ab}=\frac{1}{45}\left(2\right)\end{cases}}\)
giải 1 : \(\Rightarrow5b=4a\Rightarrow a=\frac{5b}{4}\)thế vào 2 có
\(\frac{\frac{5b}{4}-b}{\frac{5b}{4}.b}=\frac{\frac{b}{4}}{\frac{5b^2}{4}}=\frac{b.4}{5b^2.4}=\frac{1}{5b^2}=\frac{1}{45}\Rightarrow b^2=9\Rightarrow\orbr{\begin{cases}b=3\\b=-3\end{cases}}\)
đến đay bạn thay lại b vào biểu thức của a tính nốt nhé
gọi hai số đó là \(a,b\ne0\)
Theo bài ra ta có : \(\frac{a+b}{4}=\frac{a-b}{1}=\frac{ab}{45}\)( 1 )
Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a+b}{4}=\frac{a-b}{1}=\frac{a+b+a-b}{4+1}=\frac{2a}{5}\Rightarrow\frac{2a}{5}=\frac{ab}{45}\Rightarrow\frac{18a}{45}=\frac{ab}{45}\Rightarrow18a=ab\Rightarrow b=18\)
Thay \(b\)vào ( 1 ) ta có :
\(\frac{a+b}{4}=\frac{a-b}{1}\)
\(\Rightarrow a+18=4.\left(a-18\right)\)
\(\Rightarrow a+18=4a-72\)
\(\Rightarrow a-4a=-72-18\)
\(\Rightarrow-3a=-90\)
\(\Rightarrow a=30\)
Vậy hai số cần tìm là 30 và 18
Tìm a,b biết tổng , hiệu , tích , của chúng lần lượt tỉ lệ với 5,1,12
Tìm hai số khác 0 biết rằng tổng, hiệu, tích của chúng tỉ lệ với 5;1;10
gọi 2 số cần tìm là a và b.theo bài ra ta có :
\(\frac{a+b}{5}=\frac{a-b}{1}=\frac{ab}{10}=\frac{3ab}{10}=\frac{a+b+a-b}{5+1}=\frac{2a}{6}=\frac{a}{3}=\frac{10a}{30}\)
\(\Rightarrow3ab=10a\Rightarrow b=\frac{10}{3}\)
\(a-b=\frac{a}{3}\Rightarrow b=\frac{2}{3}a\Rightarrow a=\frac{10}{3}.\frac{3}{2}=5\)
vậy \(\left(a;b\right)=\left(5;\frac{10}{3}\right)\)
Tìm hai số khác 0. Biết rằng tổng, hiệu, tích của chúng tỉ lệ với 5; 1; 12.
Gọi 2 số đó là a và b, theo đề bài ta có:
\(\dfrac{a+b}{5}=\dfrac{a-b}{1}=\dfrac{ab}{12}=\dfrac{a+b+a-b}{5+1}=\dfrac{2a}{6}=\dfrac{a}{3}\)
\(\Rightarrow\dfrac{ab}{12}=\dfrac{a}{3}\Rightarrow\dfrac{b}{12}=\dfrac{1}{3}\Rightarrow b=4\)
\(\Rightarrow\dfrac{a-4}{1}=\dfrac{a}{3}\Rightarrow3a-12=a\)
\(\Rightarrow2a=12\Rightarrow a=6\)
Vậy 2 số đó là 6 và 4