chứng tỏ
a, \(3^{101}\) - 1 ⋮ 2
b, \(5^{101}\) - 1 ⋮ 4
c, \(3^{101}\) + 1 ⋮ 4
1) chứng minh: A= 75( 42014 + 42013+ ... + 4 +1 )+ 25 chia hết cho 100
2) cho a,b,c>0. chứng tỏ rằng: \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
3) Tìm x biết : |x+1/101| + |x+2/101| + |x+3/101|+....+ |x+100/101|=1001x
chứng tỏ 4^101-1 nhỏ hơn 4^101/3
Chứng tỏ rằng : \(5^{27}\) <\(2^{63}\) <\(5^{28}\)
So sánh
a, A=1+2+\(2^2\) +...+\(2^4\) và B=\(2^5\) -1
b, C= 3+\(3^2\) +...+\(3^{100}\) và D= \(\dfrac{3^{101}-3}{2}\)
2:
a: A=1+2+2^2+2^3+2^4
=>2A=2+2^2+2^3+2^4+2^5
=>A=2^5-1
=>A=B
b: C=3+3^2+...+3^100
=>3C=3^2+3^3+...+3^101
=>2C=3^101-3
=>\(C=\dfrac{3^{101}-3}{2}\)
=>C=D
Ta có:
\(\left\{\begin{matrix}5^{27}=\left(5^3\right)^9=125^9\\2^{63}=\left(2^7\right)^9=128^9\end{matrix}\right\}\Rightarrow5^{27}< 2^{63}\left(1\right)\)
\(\left\{\begin{matrix}2^{63}=\left(2^9\right)^7=512^7\\5^{28}=\left(5^4\right)^7=625^7\end{matrix}\right\}\Rightarrow2^{63}< 5^{28}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow5^{27}< 2^{63}< 5^{28}\) (đpcm)
\(a.5^{27}=\left(5^3\right)^9=125^9\\ 2^{63}=\left(2^7\right)^9=128^9\)
Vì 1289 > 1259 => 263 > 527
\(5^{28}=\left(5^4\right)^7=625^7\\ 2^{63}=\left(2^9\right)^7=512^7\)
Vì 6257 > 5127 = > 528 > 263
Đã CMR: \(5^{27}< 2^{63}< 5^{28}\)
\(b.A=1+2+2^2+2^3+2^4\\ 2A=2+2^2+2^3+2^4+2^5\\ 2A-A=\left(2+2^2+2^3+2^4+2^5\right)-\left(1+2+2^2+2^3+2^4+\right)\\ A=2^5-1\\ 2^5-1=2^5-1=>A=B\\ c,C=3+3^2+....+3^{100}\\ 3C=3^2+......+3^{101}\\ 3C-C=\left(3^2+...+3^{101}\right)-\left(3+...+3^{100}\right)\\ 2C=3^{101}-3\\ C=\dfrac{3^{101}-3}{2}\\ \dfrac{3^{101}-3}{2}=\dfrac{3^{101}-3}{2}=>C=D\)
cho A= 1/2*3/4*5/6*...*99/100 và B= 2/3*4/5*5/6*...*100/101
chứng tỏ A bé hơn BTính tích A*BChứng tỏ A bé hơn 1/101.
Ta có:
1/2 < 2/3
3/4 < 4/5
.............
99/100 < 100/101
=> 1/2*3/4*5/6*...*99/100 < 2/3*4/5*6/7*...*100/101
=> A < B
2.
\(A\cdot B=\left[\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{99}{100}\right]\cdot\left[\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot...\cdot\frac{100}{101}\right]\)
\(A\cdot B=\frac{\left[1\cdot3\cdot5\cdot7\cdot...\cdot99\right]\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]}{\left[2\cdot4\cdot6\cdot8\cdot...\cdot100\right]\left[3\cdot5\cdot7\cdot9\cdot...\cdot101\right]}=\frac{1\cdot3\cdot5\cdot...\cdot99}{3\cdot5\cdot7\cdot...\cdot101}=\frac{1}{101}\)
3.
Vì A < B => A.A < A.B => A2 < 1/101 < 1/100
Mà A2 < 1/100 <=> A2 < \(\frac{1}{10}^2\)=> A < 1/10
Chứng tỏ rằng :
(1+1/3+1/5+1/7+......+1/101)-(1/2+1/4+1/6+...+1/100) = 1/52+1/53+1/54+.....+1/100+1/101+1/102
cho:
m = 1/2*3/4*5/6*....*99/100
n = 2/3*4/5*6/7*...*100/101
a, Chứng tỏ m<n
b,Tìm m*n
c, chứng tỏ m<1/10
Bài 7. Chứng tỏ rằng:
a) A=\(1+4+4^2+4^3+...+4^{2012}\) chia hết cho 21
b) B=\(1+7+7^2+7^3+...+7^{101}\) chia hết cho 8
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
1-1/2-2+2/3+3-3/4-4+4/5+5-5/6-...-100/101+101+101/102
Tính
a) (x-1/2)+(x-1/4)+(x-1/8)+...+(x-1/512)
Tìm x
a) (x-1/1×2)+(x-1/2×3)+...+(x-1/100×101)
b) (x-1)+(x-2)+(x-3)+...+(x-101)=5050
c) x+1/2+1/3+1/4+...+1/100=3/2+4/3+5/4++...+101/100