CMR:
\(\left[2004\left(2005^{2006}+2005^{2005}+2005^{2004}+...+2005\right)+1\right]\) \(⋮2005^{2007}\)
\(\frac{1}{2}\left(2004^{2005}+2005^{2006}+2006^{2007}\right)=?\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
b)\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
c)\(\left(\frac{a-b}{c-d}\right)^{2005}=\frac{2a^{2005}-b^{2005}}{2c^{2005}-d^{2005}}\)
d)\(\frac{2a^{2005}+5b^{2005}}{2c^{2005}+5d^{2005}}=\frac{\left(a+b\right)^{2005}}{\left(c+d\right)^{2005}}\)
e)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
f)\(\frac{\left(20a^{2007}-11c^{2007}\right)^{2006}}{\left(20a^{2006}+11c^{2006}\right)^{2007}}=\frac{\left(20b^{2007}-11d^{2007}\right)^{2006}}{\left(20b^{2006}+11d^{2006}\right)^{2007}}\)
ừ, bạn bik làm thì giúp mình nha ^^
So sánh A và B :
a, A = 2006^2006 + 1 / 2006^2007 + 1 và B = 2006^2007 + 1 / 2006^2008 + 1
b, A = 2004 . 2005 - 1 / 2004 . 2005 và B = 2005 . 2006 - 1 / 2005 . 2006
Cho \(\left(2x_1-3y_1\right)^{2004}+\left(2x_2+3y_2\right)^{2004}+\left(2x_3+3y_3\right)^{2004}+...+\left(2x_{2005}+3y_{2005}\right)^{2004}\le0\)
Chứng minh rằng: \(\dfrac{x_1+x_2+x_3+...+x_{2005}}{y_1+y_2+y_3+...+y_{2005}}=1,5\)
Ta có \(\left\{{}\begin{matrix}\left(2x_1-3y_1\right)^{2004}\ge0\\......\\\left(2x_{2005}-3y_{2005}\right)^{2004}\ge0\end{matrix}\right.\) \(\forall x_1;x_2...x_{2005};y_1;y_2;...y_{2005}\)
Mà theo đề cho \(\left(2x_1-3y_1\right)^{2004}+...+\left(2x_{2005}-3y_{2005}\right)^{2004}\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(2x_1-3y_1\right)^{2004}=0\\\left(2x_2-3y_2\right)^{2004}=0\\.........\\\left(2x_{2005}-3y_{2005}\right)^{2004}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x_1-3y_1=0\\2x_2-3y_2=0\\........\\2x_{2005}-3y_{2005}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{3}{2}y_1\\x_2=\dfrac{3}{2}y_2\\.....\\x_{2005}=\dfrac{3}{2}y_{2005}\end{matrix}\right.\)
Từ đó ta có:
\(\dfrac{x_1+x_2+...+x_{2005}}{y_1+y_2+...+y_{2005}}=\dfrac{\dfrac{3}{2}y_1+\dfrac{3}{2}y_2+...+\dfrac{3}{2}y_{2005}}{y_1+y_2+...+y_{2005}}\)
\(=\dfrac{\dfrac{3}{2}\left(y_1+y_2+...+y_{2005}\right)}{y_1+y_2+...+y_{2005}}=\dfrac{3}{2}=1.5\) (đpcm)
Ghi lại đề đi bạn, nhìn qua dấu các biểu thức là biết bạn ghi sai đề rồi
Cho \(\frac{a}{b}=\frac{c}{d}\)Chứng tỏ
\(\frac{\left(a^{2004}+b^{2004}\right)^5}{\left(c^{2004}+d^{2004}\right)^5}=\left(\frac{a^{2005}+b^{2005}}{c^{2005}-d^{2005}}\right)^{2004}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR:\(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)
CMR:\(\frac{a^{2005}}{b^{2005}}=\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}\)
Giúp với ạ(mn đừng giải bằng cách đặt k nha)
1)A=2005^2005+1 trên 2005^2006+1 và B=2005^2004+1 trên 2005^2005 2)A=2006^2006+1 trên2007^2007+1 vàB=2006^2005+1 trên 2006^2006+1
2005:2007-1/2004+2005:2006
Bạn nên viết lại đề để mọi người dễ hiểu hơn.
Tinh nhanh :
a) Tu so : 2005*2007-1
Mau so : 2004+2005*2006
b) Tu so : 2003*2004+2005*10+1994
Mau so: 2005*2004-2003*2004
a) \(\frac{2005.2007-1}{2004+2005.2006}=\frac{\left(2014+1\right).2007-1}{2004+2005.2006}=\frac{2004+2005.2007-1}{2004+2005-2006}=\frac{2004+2005.2006}{2004+2005.2006}=1\)