Chứng minh các biểu thức sau luôn dương với mọi giá trị của biến
a,x^2-4x-7
b,4x^2-12x+11
c,x^2-x+1
Bài 1: Tìm gtln của các bth
a)A= -x^2 – 4x -2
b)B= -2x^2 – 3x +5
c)C= (2-x)(x + 4)
d)D= -8x^2 + 4xy – y^2 +3
Bài 2:CMR: Giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a)A=25x^2 – 20x + 7
b)B=9x^2 – 6xy + 2y^2 + 1
c)E=x^2 – 2x + y^2 – 4y +6
Bài 1:
a) Ta có: \(A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4-2\right)\)
\(=-\left(x+2\right)^2+2\le2\forall x\)
Dấu '=' xảy ra khi x=-2
b) Ta có: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}\le\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{4}\)
c) Ta có: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-\left(x^2+2x-8\right)\)
\(=-\left(x^2+2x+1-9\right)\)
\(=-\left(x+1\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=-1
Bài 2:
a) Ta có: \(=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)
b) Ta có: \(B=9x^2-6xy+2y^2+1\)
\(=9x^2-6xy+y^2+y^2+1\)
\(=\left(3x-y\right)^2+y^2+1>0\forall x,y\)
c) Ta có: \(E=x^2-2x+y^2-4y+6\)
\(=x^2-2x+1+y^2-4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1>0\forall x,y\)
Chứng minh các biểu thức sau luân dương với mọi giá trị của biến
A = x^2 - 4x + 7
B = 4x^2- 12x + 11
C= x^2 -x +1
\(A=x^2-4x+7=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\forall x\)
Vậy ta có đpcm
\(B=4x^2-12x+11=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\forall x\)
Vậy ta có đpcm
\(C=x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
Vậy ta có đpcm
\(\hept{\begin{cases}A=x^2-4x+4+3=\left(x-2\right)^2+3\ge3>0\\B=4x^2-12x+9+2=\left(2x-3\right)^2+2\ge2>0\\C=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)
Chứng tỏ biểu thức sau luôn dương với mọi giá trị của x :
A = 4x2 - 12x + 15
\(A=4x^2-12x+15=\left(2x\right)^2-12x+9+6\)
\(=\left(2x-3\right)^2+6\)
Vì \(\left(2x-3\right)^2\ge0\forall x\)\(\Rightarrow A\ge6\)
\(\Rightarrow\)A luôn dương
Chứng minh các biểu thức sau luôn âm với mọi giá trị của x
P=-x2+4-5
Q=-4x^2+12x-12
P = \(-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\)với mọi x \(\Rightarrow\)GTN của P là -1 đạt được khi x = 2
Q = \(-4x^2+12x-12=-\left(4x^2-12x+12\right)\)
\(=-\left(4x^2-12x+9+3\right)=-\left(2x-3\right)^2-3\)
Vì \(-\left(2x-3\right)^2\le0\)với mọi x \(\Rightarrow\)GTNN của Q là -3 đạt được khi x = \(\frac{3}{2}\)
P=-x2+4-5 =-x2-1
ta có -x 2 < hoặc bằng 0 với mọi x
=> P=-x2-1<hoặc bằng -1
=>P luôn luôn âm
Chứng minh các biểu thức sau luôn có giá trị dương với mọi giá trị của biến: a) 1/4 x -x² +2 b) 3x + 2x² +1 c) 9x² -12x + 5 d) ( x+2)² +(x-2)²
a: Sửa đề: 1/4x+x^2+2
x^2+1/4x+2
=x^2+2*x*1/8+1/64+127/64
=(x+1/8)^2+127/64>=127/64>0 với mọi x
=>ĐPCM
b: 2x^2+3x+1
=2(x^2+3/2x+1/2)
=2(x^2+2*x*3/4+9/16-1/16)
=2(x+3/4)^2-1/8
Biểu thức này ko thể luôn dương nha bạn
c: 9x^2-12x+5
=9x^2-12x+4+1
=(3x-2)^2+1>=1>0 với mọi x
d: (x+2)^2+(x-2)^2
=x^2+4x+4+x^2-4x+4
=2x^2+8>=8>0 với mọi x
chứng minh các biểu thức sau luôn có giá trị âm với mọi giá trị của biến
a)E=12x-4x^2-11 b)F=x-x^2-1
Bài 6 chứng minh các biểu thức luôn dương vs mọi x,y
A=x^2+2x+2
B=4x^2-4x+11
C=x^2-x+1
D=x^2-2x+y^2+4y+6
E=x^2-2xy+y^2+x^2-8x+20
a) \(A=x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\forall x\)
b) \(B=4x^2-4x+11\)
\(=4x^2-4x+1+10\)
\(=\left(2x-1\right)^2+10>0\forall x\)
c) \(C=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d) Ta có: \(D=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
e) Ta có: \(D=x^2-2xy+y^2+x^2-8x+20\)
\(=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4>0\forall x,y\)
\(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
\(B=4x^2-4x+11=\left(2x-1\right)^2+10\ge10>0\left(\forall x\right)\)
\(C=x^2-x+1=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(D=x^2-2x+y^2+4y+6=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1>0\)
\(E=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4\ge4>0\)\(\left(\forall x,y\right)\)
Chứng minh biểu thức luôn dương với mọi x:
a) A=x^2+4x+7
b) B=x^2-10x+29
c) C=4x^2+4x+5
d) D=x^2-x+5
e) E=2x^2-3x+13
Chứng minh rằng các đa thức sau luôn luôn nhận giá trị dương với mọi giá trị của biến:
a,x^2+4x+7
b,4x^2-4x+5
c,x^2+2y^2+2xy-2y+3
d,2x^2-4x+10
e,x^2+x+1
f,2x^2-6x+5
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0