tìm GTNN của biểu thức A+2x^2 +2y^2-2xy-2x-2y+2017
Tìm GTNN của biểu thức:
\(A=x^2+2y^2+2xy-2x-8y+2017\)
Ta có
\(A=x^2+2y^2+2xy-2x-8y+2017\)
\(=\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(y^2-6y+9\right)+2007\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-3\right)^2+2007\)
\(=\left(x+y-1\right)^2+\left(y-3\right)^2+2007\ge2007\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
tìm GTNN của biểu thức sau: A=2x^2+y^2+2xy+2x-2y+2023
Lời giải:
$A=2x^2+y^2+2xy+2x-2y+2023$
$=(x^2+2xy+y^2)+x^2+2x-2y+2023$
$=(x+y)^2-2(x+y)+x^2+4x+2023$
$=(x+y)^2-2(x+y)+1+(x^2+4x+4)+2018$
$=(x+y-1)^2+(x+2)^2+2018\geq 0+0+2018=2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $x+y-1=x+2=0$
$\Leftrightarrow x=-2; y=3$
HELP MEEEE:
Tìm GTNN của biểu thức:
a) A= x^2+2x+12
b) B= x^2+2y^2+2xy-2x+2y+33
a) \(A=x^2+2x+12\)
\(A=x^2+2x+1+11\)
\(A=\left(x+1\right)^2+11\)
Có: \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+11\ge11\)
Dấu bằng xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy: \(Min_A=11\) tại \(x=-1\)
Tìm GTNN của biểu thức: A = \(-x^2-2y^2-2xy+2x-2y-15\)
Tìm GTNN của biểu thức F= 2x^2 + 2xy +y^2 - 2x+2y+ 2.
Nhanh với ạ!
\(F=2x^2+y^2+2y\left(x+1\right)+\left(x+1\right)^2-x^2-2x-1-2x+2\)
\(=\left(y+x+1\right)^2+x^2-4x+1\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x;y\)
=> \(MinF=-3\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
Tìm GTNN của biểu thức:
a) \(A=2x^2+2xy+y^2-2x+2y+2\)
b) \(B=-x^2+2xy-4y^2+2x+10y+5\)
c) \(C=-x^2-2y^2-2xy+2x-2y-15\)
tìm gtnn của biểu thức : A= x^2 -2xy +2y^2 +2x -10y +2033
Giải:x2-2xy+y2+y2+2x-10y+2033=(x-y)2+2(x-y)+1+y2-8y+16+2016
=(x+y+1)2+(y-4)2+2016>=2016 Vì(x+y+1)2;(y-4)2 >=0 với mọi x;y
nên A min=2016 khi y=4;x=-5
Cho hình bình hành ABCD . Có M,N,P,Q,E,F lần lượt là trung điểm của AB,BC,CD,AD,AC,BD. Chứng minh MP,NQ,EF đồng quy
tìm gtnn của biểu thức
a/ x^2 + 2y^2+2xy +4x + 6y +19
b/2x^2+y^2+2xy-2y-4
c/4x^2 +2xy-4x+4xy-3
a) \(A=x^2+2y^2+2xy+4x+6y+19\)
\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)
\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)
\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)
b)Đề có gì đó sai sai...
c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!
b) \(P=2x^2+y^2+2xy-2y-4\)
\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)
\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)
\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)
Có \(2P\ge-12\Leftrightarrow P\ge-6\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)
tìm GTNN của biểu thức
A=x^2+2y^2+2xy+2x-4y+2016
\(A=x^2+2y^2+2xy+2x-4y+2016\)
\(=x^2+y^2+y^2+2xy+2x+2y-6y+2016\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+\left(2x+2y\right)+2007\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+2\left(x+y\right)+2007\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)
Vì \(\hept{\begin{cases}\left(x+y+1\right)^2\ge0;\forall x,y\\\left(y-3\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2\ge0;\forall x,y\)
\(\Rightarrow\left(x+y+1\right)^2+\left(y-3\right)^2+2006\ge0+2006;\forall x,y\)
Hay \(A\ge2006;\forall x,y\)
Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
Vậy \(A_{min}=2006\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)