Tìm x, y nguyên sao cho x2 - 2xy - x + 2y = 9
Tìm x,y nguyên sao cho: 2xy+x-2y=4
tìm các cặp x,y nguyên sao cho
2xy+x-2y=4
\(2xy+x-2y=4\\\Rightarrow (2xy+x)-2y-1=3\\\Rightarrow x(2y+1)-(2y+1)=3\\\Rightarrow (2y+1)(x-1)=3\)
Ta có: \(x,y\) nguyên
\(\Rightarrow2y+1;x-1\) là các ước của \(3\)
Mặt khác: \(2y+1\) là số lẻ với mọi \(y\) nguyên
Ta có bảng:
x - 1 | 3 | -3 |
2y + 1 | 1 | -1 |
x | 4 | -2 |
y | 0 | -1 |
(thoả mãn điều kiện \(x,y\) nguyên)
Vậy: ...
#\(Toru\)
Tìm tất cả các cặp số nguyên (x;y) sao cho: x+2xy+2y+6=0
Tìm tất cả các cặp số nguyên (x;y) sao cho: x+2xy+2y+6=0
x+2xy+2y+6=0
x . (1 + 2y) + 2y + 6 = 0
x . (1 + 2y) + 2y + 1 = 5
(1 + 2y) . (x + 1) = 5
Phần còn lại làm đc nốt chưa
Tìm tất cả các cặp số nguyên x, y sao cho: 2xy + x-2y=4
Ta có: 2xy + x - 2y = 4
=> 2y(x - 1) + x = 4
=> 2y(x - 1) + x - 1 = 3
=> 2y(x - 1) + (x - 1) = 3
=> (x - 1).(2y + 1) = 3
=> x-1 và 2y+1 là Ư(3)={-3;-1;1;3}
Ta có bảng:
x - 1 | -1 | -3 | 1 | 3 |
2y + 1 | -3 | - 1 | 3 | 1 |
x | 0 | -2 | 2 | 4 |
y | -2 | -1 | 1 | 0 |
x(2y+1)-(2y+1)= 4-1
(x-1)(2y+1)=3
Bạn tự làm tiếp nhé.
Ta có :
\(2xy+x-2y=4\)
\(\Rightarrow x\left(2y+1\right)-2y-1=3\)
\(\Rightarrow x\left(2y+1\right)-\left(2y+1\right)=3\)
\(\Rightarrow\left(x-1\right)\left(2y+1\right)=3\)
Do \(x;y\in Z\)
\(\Rightarrow x-1;2y+1\in Z\)
Mà \(x-1;2y+1\inƯ\left(3\right)\)
\(\Rightarrow x-1;2y+1\in\left\{\pm1;\pm3\right\}\)
Ta có bảng sau :
\(x-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(2y+1\) | \(3\) | \(1\) | \(-3\) | \(-1\) |
\(x\) | \(2\) | \(4\) | \(0\) | \(-2\) |
\(y\) | \(1\) | \(0\) | \(-2\) | \(-1\) |
Vậy ...
Tìm tất cả các cặp số nguyên x,y sao cho 2xy + x - 2y = 4
Ta có :
2xy + x - 2y = 4
\(\Rightarrow\) 2y ( x - 1 ) + x = 4
\(\Rightarrow\) 2y ( x - 1 ) + x - 1 = 3
\(\Rightarrow\) 2y ( x - 1 ) + ( x - 1 ) = 3
\(\Rightarrow\) ( x - 1 ) . ( 2y + 1 ) = 3
\(\Rightarrow\) x - 1 và 2y + 1 là Ư(3) = { - 3 ; - 1 ; 1 ; 3 }
Ta có bảng :
x - 1 | - 1 | - 3 | 1 | 3 |
2y + 1 | - 3 | - 1 | 3 | 1 |
x | 0 | - 2 | 2 | 4 |
y | - 2 | - 1 | 1 | 0 |
Vậy ...
2xy+x-2y=4
x(2y+1)-2y=4
x(2y+1)-2y-1=3
x(2y+1)-(2y+1)=3
(x-1)(2y+1)=3
Vì x;y là số nguyên => x-1;2y+1 là số nguyên
=> x-1;2y+1 Ư(3)
Ta có bảng:
x-1 | 1 | 3 | -3 | -1 |
2y+1 | 3 | 1 | -1 | -3 |
x | 2 | 4 | -2 | 0 |
y | 1 | 0 | -1 | -2 |
Vậy cặp số nguyên (x;y) cần tìm là: (2;1) ; (4;0) ; (-2;-1) ; (0;-2).
Ta có : 2xy + x - 2y = 4
2y(x-1) + x - 1 = 3
( x - 1 ) . ( 2y + 1 ) = 3 = 1 . 3
Ta có bảng sau
x - 1 | 1 | 3 | -1 | -3 |
2y + 1 | 3 | 1 | -3 | -1 |
x | 2 | 4 | 0 | -2 |
y | 1 | 0 | -2 | -1 |
Vậy các cặp giá trị ( x ; y ) cần tìm là ( 2 ; 1 ) ; ( 4 ; 0 ) ; ( 0 ; -2 ) ; ( -2 ; -1 )
Tìm số nguyên x,y biết:
a)2xy-2x+3y=-9
b)(x+1)2.(y-3)=-4
c)(x+3)2+(2y-1)2<44
d)(x2-1)(x2-6)<0
GIÚP MÌNH VỚI Ạ. MÌNH CẦN GẤP. MỌI NGƯỜI GIẢI THEO CÁCH HỌC CỦA TOÁN 6. MÌNH CẢM ƠN MỌI NGƯỜI
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
c) \(\left(x+3\right)^2+\left(2y-1\right)^2< 44\)
\(\Leftrightarrow\left(x+3\right)^2< 44-\left(2y-1\right)^2< 44\) (do \(-\left(2y-1\right)^2\le0\)) (1)
mà (x + 3)2 là số chính phương
Kết hợp (1) ta được \(\left(x+3\right)^2\le36\)
\(\Leftrightarrow\left(x+3\right)^2\le6^2\Leftrightarrow\left(x+3\right)^2\in\left\{0;1;4;9;25;36\right\}\)
Với (x + 3)2 \(\in\left\{0;1;4\right\}\) ta được (2y - 1)2 \(\in\left\{0;1;4;9;25;36\right\}\)
Với (x + 3)2 \(\in\left\{9;16\right\}\) ta được (2y - 1)2 \(\in\left\{0;1;4;9;25\right\}\)
Với (x + 3)2 = 25 ta được (2y - 1)2 \(\in\left\{0;1;4;9;16\right\}\)
Với (x + 3)2 = 36 ta được (2y - 1)2 \(\in\left\{0;1;4;9\right\}\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Tìm x,y là số nguyên :
c) 2x2+y2-2xy+2y-6x=5
e) x2+y2=9x+13y-20