Cho tam giác ABC , D là trung điểm của AB , Đường thẳng qua D và song song với BC cắt AC ở E , đường thẳng qua E và song song với AB cắt BC ở F.Chứng minh rằng :
a) AD=EF
b) Tam giác ADE = Tam giác EFC
c) AE=EC
Cho tam giác ABC , D là trung điểm của AB , Đường thẳng qua D và song song với BC cắt AC ở E , đường thẳng qua E và song song với AB cắt BC ở F.Chứng minh rằng :
a) AD=EF
b) Tam giác ADE = Tam giác EFC
c) AE=EC
a)Nối D với F .
Do DE // BF , EF // BD
nên tam giác DEF=tam giác FBD(g.c.g)
=>EI=DB .
Ta lại có:AD=DB
=>AD=BF
b)Ta có:AB // EF =>góc A = góc E1(đồng vị) .
AD // EF,DE // FC NÊN : góc D1=F1(cùng =góc B)
=>tam giác ADE=tam giác EFC(g.c.g)
c)tam giác ADE=tam giác EFC(câu B)
=>AE=EC(g.c.g)
xét T/G EDF và BFD
DF chung EDF=BFD (so le trong ) vì ED//CB ( gt)
EFD=BDF ( so le trong ) vì EF//AB (gt)
=> EDF=BFD ( G.C.G) => EF = BD ( 2 cạnh tương ứng ) mà DB =AD ( trung điểm D) => EF=AD ( dcpcm)
câu B) có EF=AD (CMT)
có CEF=EAC ( đồng vị ) vì EF//AB
có EFC=ADE ( cùng đồng vị với góc B ) vì EF//AB và ED//CB
=> ADE=EFC ( G.C.G)
câu C)
Có T/G ADE = EFC (CMT) => AE=EC (2 cạnh tương ứng )
xong k đúng dùm mình nha
Cho tam giác ABC , D là trung điểm của AB , Đường thẳng qua D và song song với BC cắt AC ở E , đường thẳng qua E và song song với AB cắt BC ở F.Chứng minh rằng :
a) AD=EF
b) Tam giác ADE = Tam giác EFC
c) AE=EC
lam so so thoi do
a,Xét tam giác CEF và tam giác FBD co
DF la canh chung
góc EDF = góc DFB ( 2 góc so le trong của DE//BC)
góc BDF = Góc EDF( 2 góc so le trong của EF//AB)
=> tam giác CEF= tam giác FBD (g.c.g)
=>EF = DB ( 2 cạnh tương ứng)
mà BD= AD ( D la trung diem cua AB)
=> EF= AD(dpm)
b,mới nghĩ đến đó thôi
hình nè lo mà cảm ơn đi, bữa sau tui nghĩ tiếp câu b chợ, mới được có 2 yếu tố
làm tiếp nè:
b, ta có
goc BDF + goc FDE + gocEDA=180 goc BFD + goc DFE+goc EFC=180mà goc BDF=goc EFD (chứng minh trên: cmt)
goc FDE= goc DBF (cmt)
=> goc EDA= goc EFC
Xét tam giác ADE và tam giác EFC có
EF=AD(cmt))
góc EDA = EFC ( cmt)
góc FEC= góc EAD ( 2 góc đồng vị của EF//AB)
=> tam giác ADE = tam giác EFC ( dpcm)
c, Vi tam giác ADE= tam giác EFC
=> AE=EC( 2 cạnh tương ứng)
Cho tam giác ABC,D là trung điểm của AB.Đường thẳng qua D và song song với BC cắt AC tại E, đường thẳng qua E và song song với AB cắt BC ở F.Chứng Minh rằng a,AD=EF b,tam giác ADE= tam giác EFC c,AE=EC
hình e tự vẽ
a) xét tg ABC có +D là tđ của AB
+DE//BC
=> DF là đg tb của tg ABC
=> F là tđ của BC
xét tg BDF và tg FEC có:
\(+\widehat{DBF}=\widehat{EFC}\) ( vì EF//BD)
\(+BF=FC\left(cmt\right)\)
\(+\widehat{DBF}=\widehat{ECF}\) ( đồng vị_
=> tg BDF = tg FEC (gcg)
=> BD=EF mà BD=DA
=> AD=EF
b)Xét tg ABC có D là tđ của AB ; DE//Bc
=> DE là đg tb của tg ABC
=> E là tđ của AC
xét tg ADE và tg EFC có :
\(+\widehat{DAE}=\widehat{FEC}\) (vì EF//AB)
\(+AE=EC\)
\(+\widehat{AED}=\widehat{ECF}\)(DE//BC)
=> tg ADE = tg EFC(gcg)
c) theo cmt AE=EC vì E là tđ Của AC
cho tam giác ABC,D là trung điểm của AB .đường thẳng qua D và song song với BC cắt AC ở E và song song với AB cắt BC ở F.chứng minh rằng:
a) AD=EF
b) tam giác ADE= tam giác EFC
c) AE=EC
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC
c) AE = EC
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC= tam giác DBF
c) BC= 2 lần DE
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE =Tam giác EFC
c) AE = EC
D với F. Xét ΔBDF và ΔFDE ta có:
ˆBDF=^DFE (so le trong (Vì AB//EF (gt))
DF cạnh chung
ˆDFB=ˆFDE(so le trong (Vì DE//BC (gt))
⇒ΔBDF=ΔFDE (g.c.g)
⇒DB=EF (2 cạnh tương ứng )
Mà DB=DA (D là trung điểm AB)
Suy ra AD=EF
b)Xét ΔADE và ΔEFC ta có:
ˆADE=ˆCFE (=ˆBAC; đồng vị của DE//BC và EF//AB)
AD=EF (cmt)
ˆDAE=ˆFEC(đồng vị của DE//BC)
⇒ΔADE=ΔEFC (g.c.g)
c)Vì ΔADE=ΔEFC (cmt)
Suy ra AE=EC (2 cạnh tương ứng )
HT
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE =Tam giác EFC
c) AE = EC
cho tam giác ABC, D là trung điểm của AB. đường thẳng qua D song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F.
chứng minh rằng
a. AD=EF.
b. tam giác ADE=tam giác EFC.
Cho tam giác ABC, D là trung điểm của AB, đường thẳng qua D song song với BC cắt AC ở E, đường thẳng qua E song song với AB cắt BC ở F. Chứng minh rằng:
a) AD=EF
b) tam giác ADE bằng tam giác EFC
c) AE=EC
a)Nối D với F. Xét \(\Delta BDF\) và \(\Delta FDE\) ta có:
\(\widehat{BDF}=\widehat{DFE}\) (so le trong (Vì AB//EF (gt)))
DF cạnh chung
\(\widehat{DFB}=\widehat{FDE}\) (so le trong (Vì DE//BC (gt)))
\(\Rightarrow\Delta BDF\)\(=\Delta FDE\) (g.c.g)
\(\Rightarrow DB=EF\) (2 cạnh tương ứng )
Mà \(DB=DA\) (D là trung điểm AB)
Suy ra AD=EF
b)Xét \(\Delta ADE\) và \(\Delta EFC\:\) ta có:
\(\widehat{ADE}=\widehat{CFE}\) (\(=\widehat{BAC}\); đồng vị của DE//BC và EF//AB)
\(AD=EF\) (cmt)
\(\widehat{DAE}=\widehat{FEC}\) (đồng vị của DE//BC)
\(\Rightarrow\Delta ADE=\Delta EFC\) (g.c.g)
c)Vì \(\Delta ADE=\Delta EFC\) (cmt)
Suy ra \(AE=EC\) (2 cạnh tương ứng )
Cho tam giác ABC, D là trung điểm của AB. Đường thẳng qua D và song song với BC cắt AC ở E, đường thẳng qua E và song song với AB cắt BC ở F. Chứng minh rằng :
a) AD = EF
b) Tam giác ADE = Tam giác EFC
c) AE = EC
mk đang cần gấp
c: Xét ΔABC có
D là trung điểm của AB
DE//BC
Do đó: E là trung điểm của AC