Cho a/b+c=b/c+a=c/a+b. Tính giá trị của a/b+c;b/c+a;c/a+b.
Cho \(\dfrac{a}{b+c}=\dfrac{b}{a+c}\) và (a ≠ +-b; a ≠ -c; b ≠ -c). Tính giá trị của M = \(\dfrac{c}{a+b}\)
Ta có:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}\)
\(\Rightarrow a\left(a+c\right)=b\left(b+c\right)\)
\(\Rightarrow a^2+ac=b^2+bc\)
\(\Rightarrow a^2-b^2=bc-ac\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)=c\left(b-a\right)\)
\(\Rightarrow\left(a+b\right)\left(a-b\right)=-c\left(a-b\right)\)
\(\Rightarrow a+b=\dfrac{-c\left(a-b\right)}{a-b}\)
\(\Rightarrow a+b=-c\)
Thay \(a+b=-c\) ta có:
\(M=\dfrac{c}{a+b}=\dfrac{c}{-c}=-1\)
a. Cho các số x, y, z tỉ lệ vs các số 5; 4; 3. Tính giá trị của P = x + 2y - 3z / x - 2y + 3z
b. Cho a+b+c = 2015 & 1/a+b + 1/b+c + 1/c+a =1/5. Tính giá trị của Q = a/b+c + b/c+a + c/a+b
a, Đặt \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\Rightarrow x=5k,y=4k,z=3k\)
Ta có: \(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{4k}{6k}=\frac{2}{3}\)
b, \(Q+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(Q+3=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(Q+3=2015\cdot\frac{1}{5}=403\)
=>Q=403-3=400
a,\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=k\)
\(\Rightarrow P=\frac{5k+2.4k-3.3k}{5k-2.4k+3.3k}=\frac{4}{6}=\frac{2}{3}\)
b, \(Q=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
\(\Rightarrow Q+3=\left(1+\frac{a}{b+c}\right)+\left(1+\frac{b}{c+a}\right)+\left(1+\frac{c}{a+b}\right)\)
\(\Rightarrow Q+3=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(\Rightarrow Q+3=\frac{a+b+c}{b+c+c+a+a+b}=\frac{2015}{5}=403\)
\(\Rightarrow Q=400\)
Vậy Q = 400
Cho a+b+c =0 . Tính giá trị của biểu thức P = a^2+b^2 +c^2/a.(a-b) +b.(b-c) +c.(c-a)
Lời giải:
Ta có:
$a(a-b)+b(b-c)+c(c-a)=a^2+b^2+c^2-ab-bc-ac$
$=\frac{3}{2}(a^2+b^2+c^2)-[\frac{1}{2}(a^2+b^2+c^2)+ab+bc+ac]$
$=\frac{3}{2}(a^2+b^2+c^2)-\frac{1}{2}(a^2+b^2+c^2+2ab+2bc+2ac)$
$=\frac{3}{2}(a^2+b^2+c^2)-\frac{1}{2}(a+b+c)^2$
$=\frac{3}{2}(a^2+b^2+c^2)$
$\Rightarrow P=\frac{a^2+b^2+c^2}{\frac{3}{2}(a^2+b^2+c^2)}=\frac{2}{3}$
cho a/b+c=b/c+a=c/a+b=1 tính giá trị của biểu thức A= a^2/b+c=b^2/c+a=c^2/a+b
a/(b+c) + b/(c+a) + c/(a+b) = 1
A = a²/(b+c) + b²/(c+a) + c²/(a+b)
= a[a/(b+c)] + b[b/(c+a)] + c[c/(a+b)]
= a[a/(b+c) + 1 - 1] + b[b/(c+a) + 1 - 1] + c[c/(a+b) + 1 - 1]
= a.(a+b+c)/(b+c) -a + b.(a+b+c)/(c+a) - b + c.(a+b+c)/(a+b) - c
= (a+b+c)[a/(b+c) + b/(c+a) + c/(a+b)] - (a+b+c)
= (a+b+c) - (a+b+c) = 0
Cho a+b+c=0
Hãy tính giá trị của biểu thức P = ((b-c)/a+(c-a)/b+(a-b)/c)(a/(b-c)+b/(c-a)+c/(a-b))
cho a,b,c đôi một khác nhau tính giá trị của biểu thức P=a/(a-b)(a-c)+b/(b-c)(b-a)+c/(c-a)(c-b)
P = -a.(b-c)-b.(c-a)-c.(a-b)/(a-b).(b-c).(c-a)
= -ab+ac-bc+ba-ca+ab/(a-b).(b-c).(c-a) = 0
Vậy P = 0
k mk nha
Cho a +b+c=2007 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/90 Tính giá trị của S= a/(b+c) + b/ (c+a) + c /(a +b)
nhân 2 vế cho (a+b+c) ta được:
a+b+c/a+b + a+b+c/b+c + a+b+c/c+a= a+b+c/90
1 + c/a+b + 1+ a/b+c + 1+ b/c+a=2007/90
c/a+b + a/b+c + b/c+a= 2007/90 - 3=? tự tính
vậy kết quả cần tìm là:
Cho a +b+c=2007 và 1/(a+b) + 1/(b+c) + 1/(c+a) = 1/90 Tính giá trị của S= a/(b+c) + b/ (c+a) + c /(a +b)
cho a+b+c=2015 và 1/a+b+1/b+c+1/c+a=1/5.Tính giá trị của Q=a/b+c+b/c+a+c/a+b
\(Q=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
=> Q + 3 = \(\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)
\(=\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\)
\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\)
\(=2015.\frac{1}{5}=403\)\(\text{Vì }\hept{\begin{cases}a+b+c=2015\\\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{5}\end{cases}}\)
Khi đó Q = 3 = 403
=> Q = 400
Vậy Q = 400