cho \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\). Tìm gtr biểu thức \(A=\dfrac{a-b+c}{a+2b-c}\)
Cho \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\)Tìm giá trị của biểu thức \(A=\dfrac{a-b+c}{a+2b-c}\)
Đặt \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=k\Rightarrow a=2k;b=5k;c=7k\)(1)
Thay (1) vào biểu thức trên ta có :
\(A=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{k\left(2-5+7\right)}{k\left(2+10-7\right)}=\dfrac{4}{5}\)
Vậy biểu thức \(A=\dfrac{4}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
a/2=b/5=c/7=\(\dfrac{a-b+c}{2-5+7}=\dfrac{a-2b+c}{2+10-7}\)
suy ra \(\dfrac{a-b+c}{a+2b-c}=\dfrac{2-5+7}{2+10-7}=\dfrac{4}{5}\)
Vậy biểu thức A=\(\dfrac{4}{5}\)
Tick em nha cô
Cho \(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\)
tìm giá trị của biểu thức A=\(\dfrac{a-b+c}{a+2b-c}\)
Em mới học lớp 6 ạ,có gì sai sót mong anh /chị bỏ qua
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\)
\(\Rightarrow a=2k\)
\(\Rightarrow b=5k\)
\(\Rightarrow c=7k\)
\(\Rightarrow A=\dfrac{a-b+c}{a+2b-c}=\dfrac{2k-5k+7k}{2k+2.5k-7k}\)
\(\Rightarrow A=\dfrac{4k}{2k+10k-7k}\)
\(\Rightarrow A=\dfrac{4k}{5k}\)
\(\Rightarrow A=\dfrac{4}{5}\)
Cho \(\dfrac{a}{2b}=\dfrac{2b}{c}=\dfrac{c}{a}\)và a+2b+c≠0. Tính giá trị của biểu thức M=\(\dfrac{a^3.c^2.b^{2015}}{b^{2020}}\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a}{2b}=\dfrac{2b}{c}=\dfrac{c}{a}=\dfrac{a+2b+c}{2b+c+a}=1\)
\(\dfrac{a}{2b}=1\Rightarrow a=2b\\ \dfrac{2b}{c}=1\Rightarrow c=2b\\ \dfrac{c}{a}=1\Rightarrow a=c\\ \Rightarrow a=2b=c\)
\(M=\dfrac{a^3.c^2.b^{2015}}{b^{2020}}=\dfrac{a^3.a^2}{b^5}=\dfrac{a^5}{b^5}=\dfrac{\left(2b\right)^5}{b^5}=\dfrac{32b^5}{b^5}=32\)
Có \(\dfrac{a}{2b}=\dfrac{2b}{c}=\dfrac{c}{a}=\dfrac{a+2b+c}{2b+c+a}=1\)
=> a = 2b = c
M = \(\dfrac{a^3.c^2.b^{2015}}{b^{2020}}=\dfrac{a^3.c^2}{b^5}=\dfrac{\left(2b\right)^3.\left(2b\right)^2}{b^5}=\dfrac{32.b^5}{b^5}=32\)
Cho a,b,c >0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\). Tìm GTLN của biểu thức
\(M=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\)
\(4M=\dfrac{4}{\left(a+b\right)+\left(a+c\right)}+\dfrac{4}{\left(a+b\right)+\left(b+c\right)}+\dfrac{4}{\left(c+a\right)+\left(b+c\right)}\)
\(\le\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{b+c}\)
\(=\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
=> 8M \(\le\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{c}+\dfrac{1}{a}=2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=8\)
=> \(M\le1\)
Dấu "=" xảy ra <=> a = b = c = 3/4
\(\dfrac{1}{2a+b+c}=\dfrac{1}{a+a+b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Tương tự:
\(\dfrac{1}{a+2b+c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)
Cộng vế:
\(M\le\dfrac{1}{16}\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1\)
\(M_{max}=1\) khi \(a=b=c=\dfrac{3}{4}\)
cho các số dương a,b,c thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=4\)
Tìm giá trị lớn nhất của biểu thức M= \(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\)
Áp dụng bất đẳng thức: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\) \(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\left(đúng\right)\)
\(\dfrac{1}{2a+b+c}=\dfrac{1}{4}.\dfrac{4}{2a+b+c}\le\dfrac{1}{4}\left(\dfrac{1}{2a}+\dfrac{1}{b+c}\right)\le\dfrac{1}{4}\left[\dfrac{1}{2a}+\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\right]=\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{2b}+\dfrac{1}{2c}\right)\)
CMTT \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a+2b+c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{b}+\dfrac{1}{2c}\right)\\\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{2a}+\dfrac{1}{2b}+\dfrac{1}{c}\right)\end{matrix}\right.\)
\(\Rightarrow M=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{8}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{2}{2a}+\dfrac{2}{2b}+\dfrac{2}{2c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}.4=1\)
\(minM=1\Leftrightarrow a=b=c=\dfrac{3}{4}\)
Cho các số thực dương a, b, c thỏa mãn a ≥ b + c. Tìm GTNN của biểu thức:
P = \(\dfrac{a}{b+c}+\dfrac{b}{a+2c}+\dfrac{c}{a+2b}\)
Cho a,b,c >0 thỏa mãn \(a+b+c=\sqrt{6063}\):
Tìm GTLN của biểu thức :
\(P=\dfrac{2a}{\sqrt{2a^2+2021}}+\dfrac{2b}{\sqrt{2b^2+2021}}+\dfrac{2c}{\sqrt{2c^2+2021}}\)
\(a+b+c=\sqrt{6063}\Leftrightarrow\dfrac{a}{\sqrt{2021}}+\dfrac{b}{\sqrt{2021}}+\dfrac{c}{\sqrt{2021}}=\sqrt{3}\)
Đặt \(\left(\dfrac{a}{\sqrt{2021}};\dfrac{b}{\sqrt{2021}};\dfrac{c}{\sqrt{2021}}\right)=\left(x;y;z\right)\Rightarrow x+y+z=\sqrt{3}\)
\(P=\dfrac{2x}{\sqrt{2x^2+1}}+\dfrac{2y}{\sqrt{2y^2+1}}+\dfrac{2z}{\sqrt{2z^2+1}}\)
Ta có đánh giá:
\(\dfrac{x}{\sqrt{2x^2+1}}\le\dfrac{3\sqrt{15}x+2\sqrt{5}}{25}\)
Thật vậy, BĐT tương đương:
\(\left(\sqrt{3}x-1\right)^2\left(9x^2+10\sqrt{3}x+2\right)\ge0\) (luôn đúng)
Tương tự và cộng lại:
\(P\le\dfrac{6\sqrt{15}\left(x+y+z\right)+12\sqrt{5}}{25}=\dfrac{6\sqrt{5}}{5}\)
Cho các số thực dương a, b, c thỏa mãn \(a^2+b^2+c^2+abc=4\). Tìm GTNN của biểu thức \(P=\dfrac{ab}{a+2b}+\dfrac{bc}{b+2c}+\dfrac{ca}{c+2a}\)
Hi vọng là tìm GTLN:
Không mất tính tổng quát, giả sử b, c cùng phía với 1 \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc\ge b+c-1\).
Áp dụng bất đẳng thức AM - GM ta có:
\(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\Leftrightarrow2bc+abc\le4-a^2\Leftrightarrow bc\left(a+2\right)\le\left(2-a\right)\left(a+2\right)\Leftrightarrow bc+a\le2\)
\(\Rightarrow a+b+c\le3\).
Áp dụng bất đẳng thức Schwarz ta có:
\(P\le\dfrac{ab}{9}\left(\dfrac{1}{a}+\dfrac{2}{b}\right)+\dfrac{bc}{9}\left(\dfrac{1}{b}+\dfrac{2}{c}\right)+\dfrac{ca}{9}\left(\dfrac{1}{c}+\dfrac{2}{a}\right)=\dfrac{1}{9}.3\left(a+b+c\right)=\dfrac{1}{3}\left(a+b+c\right)\le1\).
Đẳng thức xảy ra khi a = b = c = 1.
Ta có: P= \(2a+3b+\dfrac{1}{a}+\dfrac{4}{b}\) = \(\text{}\text{}(\dfrac{1}{a}+a)+\left(\dfrac{4}{b}+b\right)+\left(a+2b\right)\)
Ta thấy: \(\text{}\text{}(\dfrac{1}{a}+a)\ge2\sqrt{\dfrac{1}{a}\cdot a}=2\)
\(\text{}\text{}\left(\dfrac{4}{b}+b\right)\ge2\sqrt{\dfrac{4}{b}\cdot b}=4\)
Do đó: P \(\ge2+4+5=11\)
Vậy: P(min)=11 khi: \(\left\{{}\begin{matrix}\dfrac{1}{a}=a\\\dfrac{4}{b}=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right..\)
Bài 1: Cho \(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\). Tính giá trị biểu thức A=\(\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Bài 2: Cho x; y; z ≠ 0 và \(\dfrac{x+3y-z}{z}=\dfrac{y+3x-x}{x}=\dfrac{z+3x-y}{y}\). Tính P=\(\left(\dfrac{x}{y}+3\right)\left(\dfrac{y}{z}+3\right)\left(\dfrac{z}{x}+3\right)\)
Cứu tui với :<
1.
\(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\)
\(\Leftrightarrow\dfrac{a+b+c+2a+c}{2a+c}=\dfrac{a+b+c+2b}{2b}=\dfrac{a+b+c+b+c}{b+c}\)
\(\Leftrightarrow\dfrac{a+b+c}{2a+c}+1=\dfrac{a+b+c}{2b}+1=\dfrac{a+b+c}{b+c}+1\)
\(\Leftrightarrow\dfrac{a+b+c}{2a+c}=\dfrac{a+b+c}{2b}=\dfrac{a+b+c}{b+c}\)
TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)
TH2: \(a+b+c\ne0\)
\(\Rightarrow\dfrac{1}{2a+c}=\dfrac{1}{2b}=\dfrac{1}{b+c}\)
\(\Rightarrow\left\{{}\begin{matrix}2a+c=b+c\\2b=b+c\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a=b\\b=c\end{matrix}\right.\) \(\Rightarrow2a=b=c\)
\(\Rightarrow P=\dfrac{\left(a+2a\right)\left(2a+2a\right)\left(2a+a\right)}{a.2a.2a}=9\)
Bài 2 đề sai
Ở phân thức thứ 2 không thể là \(\dfrac{y+3x-x}{x}\)
Bài 2:
\(P=\dfrac{x+3y}{y}\cdot\dfrac{y+3z}{z}\cdot\dfrac{z+3x}{x}=\dfrac{\left(x+3y\right)\left(y+3z\right)\left(z+3x\right)}{xyz}\)
Với \(x+y+z=0\)
\(\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}\\ \Leftrightarrow\dfrac{x+3y+x+y}{z}=\dfrac{y+3z+y+z}{x}=\dfrac{z+3x+x+z}{y}\\ \Leftrightarrow\dfrac{2\left(x+2y\right)}{z}=\dfrac{2\left(y+2z\right)}{x}=\dfrac{2\left(z+2x\right)}{y}\\ \Leftrightarrow\dfrac{2\left(y-z\right)}{z}=\dfrac{2\left(z-x\right)}{x}=\dfrac{2\left(x-y\right)}{y}\\ \Leftrightarrow\dfrac{2y-2z}{z}=\dfrac{2z-2x}{x}=\dfrac{2x-2y}{y}\\ \Leftrightarrow\dfrac{2y}{z}-2=\dfrac{2z}{x}-2=\dfrac{2x}{y}-2\\ \Leftrightarrow\dfrac{2y}{z}=\dfrac{2z}{x}=\dfrac{2x}{y}\\ \Leftrightarrow\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x}{y}\Leftrightarrow x=y=z=0\left(\text{trái với GT}\right)\)
Với \(x+y+z\ne0\)
\(\Leftrightarrow\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x+3y-z=3z\\y+3z-x=3x\\z+3x-y=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=4z\\y+3z=4x\\z+3x=4y\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{4x\cdot4y\cdot4z}{xyz}=64\)