Tìm x,y biết :
\(_{\left(3x-2\right)}2k\)\(_{+\left(y-\dfrac{1}{4}\right)}2k\)=0 (k thuộc N)
Cần gấp các cậu ơi, giúp mình câu này với
Tìm cặp số x, y biết:
1. (3x+5)2016 + (5y-4)2018 =0
2. \(\left(\frac{3x-5}{9}\right)^{2k}+\left(\frac{3y+1,4}{5}\right)^{2k}\le0\left(k\in N\right)\)
@Ai đó:v
Tìm min của 2x^2 + y^2 +z^2 biết xy + yz + zx = 1 và x, y, z > 0
Cách của em như sau(ko chắc đâu nhé, cách này em mới nghĩ ra thôi): Ta cho k >0thỏa mãn \(A\ge k\left(xy+yz+zx\right)\)
Hay
\(2x^2-x\left(ky+kz\right)+y^2-kyz+z^2\ge0\)
Có:\(VT=2\left(x-\frac{ky+kz}{4}\right)^2+\frac{\left(8-k^2\right)y^2-\left(2k^2+8k\right)yz+\left(8-k^2\right)z^2}{8}\)
\(=2\left(x-\frac{ky+kz}{4}\right)^2+\frac{\left(8-k^2\right)\left(y-\frac{\left(2k^2+8z\right)z}{2\left(8-k^2\right)}\right)^2+\frac{z^2}{4}\left[4\left(8-k^2\right)-\frac{\left(2k^2+8k\right)^2}{8-k^2}\right]}{8}\)
Bây giờ để bđt là luôn đúng thì \(8-k^2\ge0\) và \(4\left(8-k^2\right)=\frac{\left(2k^2+8k\right)^2}{8-k^2}\)
Ngay lập tức ta thấy \(k=\sqrt{5}-1\)
Từ đó..
Chihiro vãi cả hu hu, t giải giúp một đứa bạn thôi mà;(( vả lại t bảo là ko chắc nên đừng ném đá nhá!
Tìm x :
\(\left(2x-1\right)^{2k}+\left(y-\frac{1}{2}\right)^{2k}=0\)
Vì \(\left(2x-1\right)^{2k}\ge0;\left(y-\frac{1}{2}\right)^{2k}\ge0\forall x;y\)
Mà theo đề bài: \(\left(2x-1\right)^{2k}+\left(y-\frac{1}{2}\right)^{2k}=0\)
\(\Rightarrow\begin{cases}\left(2x-1\right)^{2k}=0\\\left(y-\frac{1}{2}\right)^{2k}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-1=0\\y-\frac{1}{2}=0\end{cases}\)\(\Rightarrow\begin{cases}2x=1\\y=\frac{1}{2}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\end{cases}\)
Vậy \(x=y=\frac{1}{2}\)
Cho hai hàm số \(y=3x-2k;y=\left(-2m+1\right)x+2k-4\). Tìm điều kiện của m và k để đồ thị của hàm số đã cho là:
c) Hai đường thẳng trùng nhau
\(y=3x-2k\left(d_1\right)\)
\(y=\left(-2m+1\right)x+2k-4\left(d_2\right)\)
\(d_1\equiv d_2\Leftrightarrow\) \(\left\{{}\begin{matrix}-2m+1=3\\-2k=2k-4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m=-2\\4k=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=-1\\k=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}m=-1\\k=1\end{matrix}\right.\) thỏa đề bài
hãy liệt kê các phần tử của tập hợp sau:
A=\(\left\{x\in Z|\left(x+1\right)\left(3x^2-10x+3\right)=0\right\}\)
B=\(\left\{2k+1|k\in Z;\left|k\right|\le2\right\}\)
m.n giúp mk bài này với ạ. thank m.n
A={-1} (vì x thuộc Z)
B={-3,-1,1,3,5} (thay k lần lượt =-2,-1,0,1,2 vào 2k+1)
1) rút gọn: A= \(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}-\dfrac{\sqrt{a}+1}{\sqrt{a}+1}+4\sqrt{a}\right).\dfrac{1}{2a\sqrt{a}}\) vs a>0, a≠1
2) cho hàm số \(y=\left(k-2\right)x+k^2-2k\). xác định k để đthị hàm số bậc nhất cắt trục hoành tại điểm có hoành độ =2
giúp mk vs ak mk cần gấp
(3x-2)2k + (y-1/4)2k=0 (k thuộc N )
tìm x;y
ta có \(\left(3x-2\right)^{2k}\ge0\);\(\left(y-\frac{1}{4}\right)^{2k}\ge0\)với mọi x,y,k
Dấu '=' xảy ra
\(\Leftrightarrow\hept{\begin{cases}\left(3x-2\right)^{2k}=0\\\left(y-\frac{1}{4}\right)^{2k}=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-2=0\\y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{2}{3}\\y=\frac{1}{4}\end{cases}}}\)
Vì (3x-2)^2k = [(3x-2)^k]^2 >=0 và (y-1/4)^2k = [(y-1/4)^k]^2 >=0
=> VT >=0
Dấu "=" xảy ra <=> 3x-2=0 và y-1/4=0 <=> x=2/3 và y=1/4
Vậy x=2/3;y=1/4
k mk nha
Với mọi k thuộc N thì 2k là số chẵn
=>(3x-2)2k>=0 và (y-1/4)2k>=0
=> đẳng thức này >=0
Dấu bằng xảy ra <=>(3x-2)2k=0 và (y-1/4)2k=0
=>x=2/3 và y=1/4
Cho hai hàm số \(y=3x-2k;y=\left(-2m+1\right)x+2k-4\). Tìm điều kiện của m và k để đồ thị của hai hàm số đã cho là:
a) Hai đường thẳng cắt nhau
b) Hai đường thẳng song song với nhau
`a)` Hai đường thẳng cắt nhau `<=>{(a ne a'),(a' ne 0):}`
`<=>{(3 ne -2m+1),(-2m+1 ne 0):}<=>{(m ne -1),(m ne 1/2):}`
`b)` Hai đường thẳng song song `<=>{(a' ne 0),(a=a'),(b ne b'):}`
`<=>{(m ne 1/2),(3=-2m+1),(-2k ne 2k-4):}`
`<=>{(m=-1),(k ne 1):}`
giải pt sau bằng các định lý : \(f\left(x\right)=g\left(x\right)\Leftrightarrow\left[f\left(x\right)\right]^{2k+1}=\left[g\left(x\right)\right]^{2k+1}\)
\(\sqrt[2k+1]{f\left(x\right)}=g\left(x\right)\Leftrightarrow f\left(x\right)=\left[g\left(x\right)\right]^{2k+1}\)
\(\sqrt[2k+1]{f\left(x\right)}=\sqrt[2k+1]{g\left(x\right)}\Leftrightarrow f\left(x\right)=g\left(x\right)\)
\(\sqrt[2k]{f\left(x\right)}=g\left(x\right)\Leftrightarrow\orbr{\begin{cases}g\left(x\right)>0\\f\left(x\right)=\left[g\left(x\right)\right]^{2k}\end{cases}}\)
\(\sqrt[2k]{f\left(x\right)}=\sqrt[2k]{g\left(x\right)}\Leftrightarrow\hept{\begin{cases}f\left(x\right)\ge0\\g\left(x\right)\ge0\\f\left(x\right)=g\left(x\right)\end{cases}}\)hoặc
a) \(\sqrt{x+1}+\sqrt{4x+13}=\sqrt{3x+12}\)
b)\(\left(x+3\right)\cdot\sqrt{10-x^2}=x^2-x-12\)
c) \(\sqrt{x+4}-\sqrt{1-x}=\sqrt{1-2x}\)
bổ xung định lý thứ 5
f(x)>=0 hoặc g(x)>=0 và f(x)=g(x)