tìm GTLN hoặc nhỏ nhất của:
B = (2x + 1/3)^4 - 1
D = -(4/9x - 2/15)^6 + 3
Tìm giá trị nhỏ nhất hoặc lớn nhất của
A=3,7|4,3-x| ;,B=(2x+1/3)^4-1 ; C=0,5-|x-4| ;D=-(4/9x-2/15)^6+3
GTNN A= 0
GTNN B= -1
GTLN C = 0,5
GTLN D = 3
Để : \(A=3,7\left|4,3-x\right|min\)
Thì :\(\left|4,3-x\right|\)Phải min
Ta có :\(\left|4,3-x\right|\ge0\)
\(\Rightarrow\left|4,3-x\right|min=0\)
\(\Rightarrow4,3-x=0\Rightarrow x=4,3\)
\(\Rightarrow Amin=3,7X4.3=15.91\)
a,Tìm giá trị nhỏ nhất của biểu thức
A=(2x+1/3)^4-1
b,Tìm giá trị lớn nhất của biểu thức
B=-(4/9x-2/15)^6+3
Tìm giá trị lớn hoặc nhỏ nhất của
A=3,7+|4,3-x|
B=(2x+1/3)4-1
C=0,5-|x-4|
D=-(4/9x-2/15)6+3
a, Với mọi x ta có :
\(\left|x-4\right|\ge0\)
\(\Leftrightarrow-\left|x-4\right|\le0\)
\(\Leftrightarrow0,5-\left|x-4\right|\le0,5\)
Dấu "=" xảy ra khi :
\(\left|x-4\right|=0\)
\(\Leftrightarrow x=4\)
Vậy \(C_{Max}=0,5\Leftrightarrow x=4\)
d, Với mọi x ta có :
\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\ge0\)
\(\Leftrightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0\)
\(\Leftrightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)+3\le3\)
\(\Leftrightarrow D\le3\)
Dấu "=" xảy ra khi :
\(\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6=0\)
\(\Leftrightarrow\dfrac{4}{9}x-\dfrac{2}{15}=0\)
\(\Leftrightarrow x=\dfrac{3}{10}\)
Vậy \(D_{Max}=3\Leftrightarrow x=\dfrac{3}{10}\)
a, Với mọi x ta có :
\(\left|4,3-x\right|\ge0\)
\(\Leftrightarrow\left|4,3-x\right|+3,7\ge3,7\)
\(\Leftrightarrow A\ge3,7\)
Dấu "=" xảy ra khi :
\(\left|4,3-x\right|=0\)
\(\Leftrightarrow x=4,3\)
Vậy \(A_{Min}=3,7\Leftrightarrow x=4,3\)
b/ Với mọi x ta có :
\(\left(2x+\dfrac{1}{3}\right)^4\ge0\)
\(\Leftrightarrow\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
\(\Leftrightarrow B\ge-1\)
Dấu "=" xảy ra khi :
\(\left(2x+\dfrac{1}{3}\right)^4=0\)
\(\Leftrightarrow2x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x=-\dfrac{1}{6}\)
Vậy \(B_{Min}=-1\Leftrightarrow x=-\dfrac{1}{6}\)
a) Tìm GTNN của biểu thức A=(2x+1/3)^4-1
b)Tìm GTLN của biểu thức B=(4/9x -2/15)^6+3
Hộ mik nhanh nhé
Tìm GTLN
-(4/9x-2/15)6+3
\(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0\Leftrightarrow-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\\ Max\Leftrightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Leftrightarrow x=\dfrac{3}{10}\)
Tìm giá trị nhỏ nhất hoacwk lớn nhất của
A=3,7+|4,3-x|
B=(2x+1/3)^4-1
C=0,5-|x-4|
D=-(4/9x-2/15)+3
b1. Phân tích đthức -> nhân tử.
a) x^3 - 3x^2 - 4x +13
b) x^4 - 5x^2 +4
c) (x+y+z)^3 -x^3 - y^3 - z^3
d) 45+ x^3 -5x^2 - 9x
e) x^4 - 2x^3 - 3x^3 - 2x -3
b2. tìm GTLN hoặc GLNN
a) A = 2x^2 - 8x - 10 -> GTNN
b) B = 9x - 3x^2 -> GTLN
2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)
\(=2\left(x-2\right)^2-18\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy minA = - 18 <=> x = 2
b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy maxB = 27/4 <=> x = 3/2
Sửa đề:x3-3x2-4x+12
a,x3-3x2-4x+12
=(x3-3x2)-(4x+12)
=x2(x-3)-4(x-3)
=(x2-4)(x-3)
b,x4- 5x2 +4
x4-4x2-x2+4
(x4-x2)-(4x2+4)
x2(x2-1)-4(x2-1)
(x2-4)(x2-1)
Bài 1.
a) x3 - 3x2 - 4x + 12 ( mạn phép sửa 13 thành 12, chứ để 13 là không phân tích được :> )
= x2( x - 3 ) - 4( x - 3 )
= ( x - 3 )( x2 - 4 )
= ( x - 3 )( x - 2 )( x + 2 )
b) x4 - 5x2 + 4
Đặt t = x2
Đa thức <=> t2 - 5t + 4
= t2 - t - 4t + 4
= t( t - 1 ) - 4( t - 1 )
= ( t - 1 )( t - 4 )
= ( x2 - 1 )( x2 - 4 )
= ( x - 1 )( x + 1 )( x - 2 )( x + 2 )
c) ( x + y + z )3 - x3 - y3 - z3
= ( x + y + z )3 - ( x3 + y3 + z3 )
= ( x + y + z )3 - [ ( x + y + z )3 - 3( x + y )( y + z )( z + x ) ] ( chỗ này bạn xem HĐT tổng ba lập phương nhé )
= ( x + y + z )3 - ( x + y + z )3 + 3( x + y )( y + z )( z + x )
= 3( x + y )( y + z )( z + x )
d) 45 + x3 - 5x2 - 9x
= ( x3 - 5x2 ) - ( 9x - 45 )
= x2( x - 5 ) - 9( x - 5 )
= ( x - 5 )( x2 - 9 )
= ( x - 5 )( x - 3 )( x + 3 )
e) x4 - 2x3 + 3x2 - 2x - 3 ( sửa -3x3 -> 3x2 )
= x4 - x3 - x3 + 3x2 - x2 + x2 - 3x + x - 3
= ( x4 - x3 + 3x2 ) - ( x3 - x2 + 3x ) - ( x2 - x + 3 )
= x2( x2 - x + 3 ) - x( x2 - x + 3 ) - 1( x2 - x + 3 )
= ( x2 - x - 1 )( x2 - x + 3 )
Bài 2.
A = 2x2 - 8x - 10
= 2( x2 - 4x + 4 ) - 18
= 2( x - 2 )2 - 18
2( x - 2 )2 ≥ 0 ∀ x => 2( x - 2 )2 - 18 ≥ -18
Đẳng thức xảy ra <=> x - 2 = 0 => x = 2
=> MinA = -18 <=> x = 2
B = 9x - 3x2
= -3( x2 - 3x + 9/4 ) + 27/4
= -3( x - 3/2 )2 + 27/4
-3( x - 3/2 )2 ≤ 0 ∀ x => -3( x - 3/2 )2 + 27/4 ≤ 27/4
Đẳng thức xảy ra <=> x - 3/2 = 0 => x = 3/2
=> MaxB = 27/4 <=> x = 3/2
a) tim GTNN: A=(2x+1/3)4-1
b) tin GTLN : B=(4/9x-2/15)6+3
C=13/(3x+2)2+11
Bài 1:Tìm x,y biết:
(1/2x-5)20+(y2-1/4)10<0
Bài 2:Tìm x thuộc Z biết:
(x-7)x+1-(x-7)x+11=0
Bài 3:A,Tìm GTNN của biểu thức A=(2x+1/3)4-1
B,Tìm GTLN của biểu thức B=-(4/9x-2/15)6+3
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10