Cho bt F= { (√x - 2) / x-1 - (√x +2) / (x +2√x +1) } x {(1-x) / √2}2
a) Rút gọn F
b) CMR: nếu 0<x<1 thì F>0
c) Tìm GTLN của F
Cho bt F= { (√x - 2) / x-1 - (√x +2) / (x +2√x +1) } x {(1-x) / √2}2
a) Rút gọn F
b) CMR: nếu 0<x<1 thì F>0
c) Tìm GTLN của F
Cho bt F= { (√x - 2) / x-1 - (√x +2) / (x +2√x +1) } x {(1-x) / √2}2
a) Rút gọn F
b) CMR: nếu 0<x<1 thì F>0
c) Tìm GTLN của F
F=(2√x/2√x-1 - 1/√x) ( √x+1/√x-1 + 3x/x-2√x+1) với x >0, x khác 1, x khác 1/4 a) rút gọn F b) tìm x để F=2 c) tìm x để 5/F là số nguyên
a: Ta có: \(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\)
\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{x-1+3x}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{4x-1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\left(2x-2\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
F=(2√x/2√x-1 - 1/√x) ( √x+1/√x-1 + 3x/x-2√x+1) với x >0, x khác 1, x khác 1/4 a) rút gọn F b) tìm x để F=2 c) tìm x để 5/F là số nguyên
Câu a đã làm: F=(2√x/2√x-1 - 1/√x) ( √x+1/√x-1 + 3x/x-2√x+1) với x >0, x khác 1, x khác 1/4 a) rút gọn F - Hoc24
\(b,F=2\Leftrightarrow\dfrac{\left(2\sqrt{x}+1\right)\left(2x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}=2\\ \Leftrightarrow2\sqrt{x}\left(x-2\sqrt{x}+1\right)=2x\sqrt{x}-4x+2\sqrt{x}+2x-2\sqrt{x}+1\\ \Leftrightarrow2x\sqrt{x}-4x+2\sqrt{x}=2x\sqrt{x}-2x+1\\ \Leftrightarrow2x-2\sqrt{x}+1=0\\ \Leftrightarrow2\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{1}{2}=0\\ \Leftrightarrow2\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{2}=0\\ \Leftrightarrow x\in\varnothing\)
F=(2√x/2√x-1 - 1/√x) ( √x+1/√x-1 + 3x/x-2√x+1) với x >0, x khác 1, x khác 1/4 a) rút gọn F
\(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\left(x>0;x\ne1;x\ne\dfrac{1}{4}\right)\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{x-1+3x}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)^2}\\ F=\dfrac{\left(2\sqrt{x}+1\right)\left(2x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
a: Ta có: \(F=\left(\dfrac{2\sqrt{x}}{2\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right)\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{3x}{x-2\sqrt{x}+1}\right)\)
\(=\dfrac{2x-2\sqrt{x}+1}{\sqrt{x}\left(2\sqrt{x}-1\right)}\cdot\dfrac{4x-1}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\left(2x-2\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)^2}\)
Cho F=\(\dfrac{1}{x^2-2x+1}-\left(\dfrac{x}{x^2-1}-\dfrac{1}{x\left(x^2-1\right)}\right)\):\(\dfrac{x^2-2x+1}{x+x^3}\)
a) Rút gọn F
b) Với giá trị của với x là nghiệm của phương trình (x-2)(x+1)=0
c) Tính giá trị của x để F =-1
d) Chứng minh rằng F<0
Cho Bt A=( x+1/x-1-x-1/x+1) / (2x/5x-5)
A,Rút gọn a
B Tính giá trị của bt a tại x=-3
C, Tính giá trị của bt A tại x thuộc /x-2/=4-2x
D, tìm x để a=2
e, tìm x để a<0
F, tìm x nguyên để a nguyên
Cho F=\(\frac{2x-\sqrt{x^2}-1}{3x^2-4x+1}\)
a, rút gọn F
b, c/m nếu x>1 thì F<0
Cho đa thức
F(x)=a*x^2+b*x+c.Hãy x/đ a,b,c bt f(0)=1;f(1)=-1;f(2)=2