Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi thanh loan
Xem chi tiết
vu
25 tháng 11 2017 lúc 20:04

Ta có: \(17+3x⋮x+1\)

\(\Rightarrow\)\(3x+3+14⋮x+1\)

Mà \(3x+3⋮x+1\)

Do đó \(14⋮x+1\)

\(\Rightarrow x+1\in\left\{1;2;7;14\right\}\)

\(\Rightarrow x\in\left\{0;1;6;13\right\}\)

triệu vạn thành
Xem chi tiết
Shinichi love Ran
Xem chi tiết
Minh Hiền
15 tháng 12 2015 lúc 10:00

a. 4x+17 chia hết cho x+3

=> 4x+12+5 chia hết cho x+3

=> 4.(x+3)+5 chia hết cho x+3

mà 4(x+3) chia hết cho x+3

=> 5 chia hết cho x+3

=> x+3 \(\in\)Ư(5)={1; 5}

+) x+3=1 (vô lí, loại)

+) x+3=5=> x=5-3=2

Vạy x=2.

b. 5x+27 chia hết cho x+4

=> 5x+20+7 chia hết cho x+4

=> 5(x+4)+7 chia hết cho x+4

=> 7 chia hết cho x+4

=> x+4 \(\in\)Ư(7)={1; 7}

+) x+4=1 (vô lí, loại)

+) x+4=7 => x=7-4=3

Vạy x=3.

helloa4
Xem chi tiết
Đào Đình Phong
22 tháng 11 2021 lúc 10:29

sssssssssssss

Khách vãng lai đã xóa
helloa4
Xem chi tiết
o0o đồ khùng o0o
5 tháng 1 2017 lúc 9:11

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

nguyenvankhoi196a
6 tháng 11 2017 lúc 6:27

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

To Thi Bich Thao
29 tháng 7 2019 lúc 22:09

gbvn nngvjn

nguyễn thị thiên duyên
Xem chi tiết
Bá Đạo Trên Từng Hạt Gạo
20 tháng 10 2015 lúc 22:51

Bài giải như sau :

493 chia hết cho x => x thuộc Ư(493)

Phân tích 493 ra thừa số nguyên tố:

493 = 17 x 29

=> 493 chia hết cho 17 hoặc 493 chia hết cho 29

=>Số x thỏa mãn đề bài là: 17 hoặc 29

Phan Hoàng Minh Nguyệt
Xem chi tiết
Bạch Tố Như
30 tháng 10 2019 lúc 6:05

câu 1

96 chia hết cho 3,6,....

Khách vãng lai đã xóa
Bạch Tố Như
30 tháng 10 2019 lúc 6:06

120 chia hết cho 2,3,4,5,6,8,10,12...

Khách vãng lai đã xóa
Học 24
Xem chi tiết
Quang Ho Si
25 tháng 11 2017 lúc 19:54

ta có: \(3x+17⋮x+1\Rightarrow3x+3+14⋮x+1\)

mà 3x+3 chia hết cho x+1 \(\Rightarrow14⋮x+1\Rightarrow x+1\in\left\{1;2;7;14\right\}\Rightarrow x\in\left\{0;1;6;13\right\}\)

Nguyễn Thanh Hằng
25 tháng 11 2017 lúc 19:55

\(17+3x⋮x+1\)

\(\Leftrightarrow3x+17⋮x+1\)

\(x+1⋮x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+17⋮x+1\\3x+3⋮x+1\end{matrix}\right.\)

\(\Leftrightarrow14⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(14\right)\)

\(x\in N\Leftrightarrow x+1\in N\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=14\\x+1=1\\x+1=2\\x+1=7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=13\\x=0\\x=1\\x=6\end{matrix}\right.\)

Vậy ..

Hoàng Thị Hải Yến
Xem chi tiết