Tìm x thuộc N biết
17 + 3 x chia hết cho x + 1Tìm x thuộc N biết
17 + 3 x chia hết cho x + 1
Ta có: \(17+3x⋮x+1\)
\(\Rightarrow\)\(3x+3+14⋮x+1\)
Mà \(3x+3⋮x+1\)
Do đó \(14⋮x+1\)
\(\Rightarrow x+1\in\left\{1;2;7;14\right\}\)
\(\Rightarrow x\in\left\{0;1;6;13\right\}\)
1) chứng tỏ
5n - 1 chia hết cho 4
4343 - 17 17 chia hết cho 10
2) tìm x thuộc N biết 2x + 3 chia hết x + 2
tìm x thuộc N , biết ;
a) 4*x+17 chia hết cho x + 3
b) 5*x +27 chia hết cho x +4
a. 4x+17 chia hết cho x+3
=> 4x+12+5 chia hết cho x+3
=> 4.(x+3)+5 chia hết cho x+3
mà 4(x+3) chia hết cho x+3
=> 5 chia hết cho x+3
=> x+3 \(\in\)Ư(5)={1; 5}
+) x+3=1 (vô lí, loại)
+) x+3=5=> x=5-3=2
Vạy x=2.
b. 5x+27 chia hết cho x+4
=> 5x+20+7 chia hết cho x+4
=> 5(x+4)+7 chia hết cho x+4
=> 7 chia hết cho x+4
=> x+4 \(\in\)Ư(7)={1; 7}
+) x+4=1 (vô lí, loại)
+) x+4=7 => x=7-4=3
Vạy x=3.
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
bài 1
Cho biết 3a + 2b chia hết cho 17 ( a, b thuộc N) .Chứng minh rằng 10a+b chia hết cho 17
bài 2
Cho biết a-5b chia hết cho 17 (a, b thuộc N).Chứng minh rằng 10a+b chia hết cho 17
bài 3
a, CMR : nếu a3x+5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N ). Điều ngược lại có đúng ko?
b, CMR : nếu 2x+3y chia hết cho 17 thì 9x + 5y chia hết cho 17 ( x,y thuộc N ) . Điều ngược lại có đúng ko?
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
Tìm x thuộc N biết
a)493 chia hết cho x và 10<x<100
b)17 chia hết cho (x-1) và (x-1)chia hết cho 7
Bài giải như sau :
493 chia hết cho x => x thuộc Ư(493)
Phân tích 493 ra thừa số nguyên tố:
493 = 17 x 29
=> 493 chia hết cho 17 hoặc 493 chia hết cho 29
=>Số x thỏa mãn đề bài là: 17 hoặc 29
Câu 1. Tìm x thuộc N biết:
96 chia hết cho x
120 chia hết cho x
Câu 2. Tìm STN biết:
180 chia hết cho x
216 chia hết cho x
x lớn hơn 6
Câu 3. Tìm x thuộc N biết:
50 chia hết cho x
80 chia hết cho x
Câu 4. Tìm x thuộc N biết:
126 chia hết cho x
180 chia hết cho x
Câu 5.
Tìm x thuộc N biết:
144 chia hết cho x
96 chia hết cho x
câu 1
96 chia hết cho 3,6,....
120 chia hết cho 2,3,4,5,6,8,10,12...
Tìm x thuộc N biết
17 + 3 x chia hết cho x + 1ta có: \(3x+17⋮x+1\Rightarrow3x+3+14⋮x+1\)
mà 3x+3 chia hết cho x+1 \(\Rightarrow14⋮x+1\Rightarrow x+1\in\left\{1;2;7;14\right\}\Rightarrow x\in\left\{0;1;6;13\right\}\)
\(17+3x⋮x+1\)
\(\Leftrightarrow3x+17⋮x+1\)
Mà \(x+1⋮x+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+17⋮x+1\\3x+3⋮x+1\end{matrix}\right.\)
\(\Leftrightarrow14⋮x+1\)
\(\Leftrightarrow x+1\inƯ\left(14\right)\)
Mà \(x\in N\Leftrightarrow x+1\in N\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=14\\x+1=1\\x+1=2\\x+1=7\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=13\\x=0\\x=1\\x=6\end{matrix}\right.\)
Vậy ..
Bài 1 Cho biết 3a+2bchi hết cho 17 ( a,b thuộc N ) . Chứng minh rằng 10a + b chia hết cho 17
Bài 2 Cho biết a - 5b chia hết cho 17 ( a,b thuộc N) Chứng minh rằng 10a + b chia hết cho 17
Bài 3 a) Chứng minh rằng Nếu 3x + 5y chia hết cho 7 thì x + 4y chia hết cho 7 ( x,y thuộc N). Điều ngược lại có đúng ko?
b)Chứng minh rằng 2x + 3ychia hết cho 17 thì 9x + 5y chia hết cho 17 (x,y thuộc N). Điều ngược lại có đúng ko?