Tìm số tự nhiên n sao cho x2n+xn + 1 chia hết cho x2 + x +1.
Tìm số tự nhiên n để đa thức:
A(x)=x2n+xn+1 chia hết cho đa thức x2+x+1.
Vì \(A\left(x\right)=x^{2n}+x^n+1\) chỉ có một hằng số là1
đa thức \(x^2+x+1\) cũng chỉ có một hằng số là 1
Để \(A\left(x\right)⋮x^2+x+1\) thì thì \(A\left(x\right)\) phải có số mũ tương ứng với các bậc như đa thức : => n=1
-Đáp án cuối cùng: \(n=3k+1\) hay \(n=3k+2\)
Tìm số tự nhiên n để đa thức:
A(x)=x2n+xn+1 chia hết cho đa thức x2+x+1.
Cho đa thức A(x) = 1 + x2 + x4 + .... + x2n - 2; B= 1 + x + x2 + ... + xn-1. Tìm số nguyên dương n để đa thức A(x) chia hết cho đa thức B(x).
A(x)=(1-x^n)(1+x^n)/(1-x)(1+x)
B(x)=1-x^n/1-x
A(x) chia hết cho B(x) khi 1-x^n chia hết cho 1+x
x^n+1/x+1=A(x)+(1+(-1)^n)/(x+1)
=>1-x^n chia hết cho 1+x khi và chỉ khi n=2k+1
1) a) | x+2 | +2 = -x
b) b) 2+(-4)+6+(-8) + ... + = - 200
c) | 6-2x | + | x-3 | = 0
2) Cho a là 1 số tự nhiên. Chứng tỏ: ( a-1 ) * ( a+2 ) + 12 không chia hết cho 9
3) Tìm các số tự nhiên n sao cho : 2^m - 2^n = 256
4) Cho n số x1;x2;x3;...;xn, mỗi số =1 hoặc -1. biết tổng của n tích, x1*x2 , x2*x3 , x3*x4 , ... , xn*x1=0. CMR n chia hết cho 4
mình cũng lớp 6 nhưng đẻ chút nữa xem mình có làm đc ko
a)Tìm tất cả các số tự nhiên a để a+15 và a-1 đều là số chính phương
b)Cho n số nguyên x1,x2,x3,.....,xn trong đó mõi số chỉ là 1 hoặc -1.Chứng minh nếu x1.x2+x2.x3+.....+xn-1.xn+xn.x1=0 thì n chia hết cho 4
a.đặt a+15=b2;a-1=c2
=>(a+15)-(a-1)=b2-c2=(b+c)(b-c)
=>(b+c)(b-c)=16
ta có 2 nhận xét:
*(b+c)-(b-c)=2c là 1 số chẵn nên 2 số b+c và b-c là 2 số cùng tính chẵn lẻ.Mà 16 là số chẵn nên 2 số b+c và b-c cùng chẵn.
*b+c>b-c(vì a là số tự nhiên)
=>b+c=8 và b-c=2 =>b=(8+2):2=5
vậy a+15=52=>a=10
Cho n số tự nhiên x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1 . x2 + x2 . x3 + ... +xn . x1 = 0 thì n chia hết cho 4
Câu hỏi của Thi Bùi - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link trên nhé!
Bài 1:
a) Tìm các số tự nhiên n sao cho 3n+10 chia hết cho n+2
b) Tìm các số nguyên tố x,y sao cho x2+117=y2
a:
b: \(x^2+117=y^2\)
=>\(x^2-y^2=-117\)
=>\(\left(x-y\right)\left(x+y\right)=-117\)
\(Ư\left(-117\right)=\left\{1;-1;3;-3;9;-9;13;-13;39;-39;117;-117\right\}\)
=>\(-117=1\cdot\left(-117\right)=\left(-1\right)\cdot117=3\cdot\left(-39\right)=\left(-3\right)\cdot39=\left(9\right)\cdot\left(-13\right)=\left(-9\right)\cdot13\)
TH1: x-y=1 và x+y=-117
=>2x=-116 và x-y=1
=>x=-58(loại)
TH2: x-y=-1 và x+y=117
=>2x=118 và x-y=-1
=>x=59 và y=59+1=60(loại)
TH3: x-y=-3 và x+y=39
=>2x=42 và x-y=-3
=>x=21(loại)
TH4: x-y=3 và x+y=-39
=>2x=-42 và x-y=3
=>x=-21(loại)
TH5: x-y=9 và x+y=-13
=>2x=-4 và x-y=9
=>x=-2(loại)
TH6: x-y=-9 và x+y=13
=>2x=4 và x-y=-9
=>x=2 và y=2+9=11
=>Nhận
Vậy: x=2 và y=11
a,Tìm các số tự nhiên x,y sao cho (2x +1)(y-5)=12
b/Tìm số tự nhiên n sao cho n + 5 chia hết cho n +1
c/Tìm số tự nhiên n sao cho 2n + 13 chia hết cho 2n +3
d/Tìm số tuwnhieen n sao cho 4n + 5 chia hết cho 2n +1
1.Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
2.Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Pls!
Bài 2:
\(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;65\right\}\)
\(\Leftrightarrow n\in\left\{0;8;-8\right\}\)
a, Tìm số tự nhiên x, biết: 8 (chia hết cho) (3x+2)
b, Tìm số tự nhiên n sao cho n+5 chia hết cho n-1
a) 8 chia hết cho 3x+2
=> 3x+2 thuộc Ư(8)={1,2,4,8}
Ta có bảng :
3x+2 | 1 | 2 | 4 | 8 |
x | -1/3 (loại) | 0 | 2/3 (loại) | 2 |
Vậy x=0 hoặc x=2
b) n+5 chia hết n-1
=> n-1+6 chia hết cho n-1
=> n-1 chia hết n-1 ; 6 chia hết cho n-1
=> n-1 thuộc Ư(6)={1,2,3,6}
Ta có bảng :
n-1 | 1 | 2 | 3 | 6 |
n | 2 | 3 | 4 | 7 |
Vậy n={2,3,4,7}