Tìm Min=\(x^2-6x+11\)
Tìm Min A = \(\sqrt{x^2+2y^2-6x+4y+11}+\sqrt{x^2+3y^2+2x+6y+4}\)
Ta có:
\(A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)
Áp dụng bđt Minkowski, ta có:
\(\Rightarrow A=\sqrt{\left(x-3\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)
\(A=\sqrt{\left(3-x\right)^2+2\left(y+1\right)^2}+\sqrt{\left(x+1\right)^2+3\left(y+1\right)^2}\)\(\ge\sqrt{\left(3-x+x+1\right)^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\)
\(A=\sqrt{4^2+\left(\sqrt{2}+\sqrt{3}\right)^2\left(y+1\right)^2}\ge\sqrt{4^2}=4\)
\(\Rightarrow A\ge4.Đ\text{TXR}\Leftrightarrow\orbr{\begin{cases}x=1;y=-1\\x=3;y=-1\end{cases}}\)
Dấu "=" xảy ra khi (x; y) = (3; -1)
tìm min
A=(x-3)2 +(x-11)2
tìm max
A= 19-6x-9x2
\(A=\left(x-3\right)^2+\left(x-11\right)^2\)
\(A=x^2-6x+9+x^2-22x+121\)
\(A=2x^2-28x+130\)
\(A=2\left(x^2-14x+49\right)+32\)
\(A=2\left(x-7\right)^2+32\ge32\)
Vậy GTNN của A là 32 khi x = 7
\(A=19-6x-9x^2 \)
\(A=-\left(9x^2+6x+1\right)+20\)
\(A=-\left(3x+1\right)^2+20\le20\)
Vậy GTLN của A là 20 khi x = \(-\frac{1}{3}\)
Tìm Min của biểu thức
A=\(\frac{6x+11}{x^2-2x+3}\)
Xét \(A\ge-\frac{1}{2}\)
<=> \(\frac{6x+11}{x^2-2x+3}\ge-\frac{1}{2}\)
<=> \(x^2-2x+3\ge-12x-22\)
<=> \(x^2+10x+25\ge0\)<=> \(\left(x+5\right)^2\ge0\)(luôn đúng)
Vậy \(MinA=-\frac{1}{2}\)khi x=-5
Tính Min A= x^2-6x+11
\(A=x^2-6x+11\)\(\)
\(=x\left(x-6\right)+11\)
\(=>A_{Min}=11\Leftrightarrow\hept{\begin{cases}x=0\\x=6\end{cases}}\)
Tìm Max, min của P=6x-8/x^2+1
Tìm min, max của P=4x+3/x^2+1
tìm min x^4-6x^3+10x^2+6x+9
1) Tìm MAX A = 3 - 4x2 - 4x ; \(B=\frac{1}{x^2+6x+11}\)
2) Tìm Min
a,3x^2 - 3x + 1
b,|3x - 3| + |3x - 5|
1) A = 3 - 4x2 - 4x = - (4x2 + 4x +1) + 4 = - (2x+1)2 + 4
Vì - (2x+1)2 \(\le\)0 nên A = - (2x+1)2 + 4 \(\le\) 4 vậy maxA = 4 khi 2x+1 = 0 => x = -1/2
b) ta có x2 + 6x + 11 = x2 + 2.3x + 9 + 2 = (x+3)2 + 2 \(\ge\) 0 + 4 = 4
=> \(B=\frac{1}{x^2+6x+11}\le\frac{1}{4}\) vậy maxB = 1/4 khi x = -3
2) a) 3x2 - 3x + 1 = 3.(x2 - x) + 1 = 3.(x2 - 2.x\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{1}{4}\) = 3.(x - \(\frac{1}{2}\) )2 + \(\frac{1}{4}\) \(\ge\)0 + \(\frac{1}{4}\)= \(\frac{1}{4}\)
vậy min(3x2 - 3x + 1) = 1/4 khi x = 1/2
b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b| \(\ge\) |a - b|. dấu = khi a.b < 0
ta có: |3x - 3| + |3x - 5| \(\ge\) |3x - 3 - (3x - 5)| = |2| = 2
vậy min = 2 khi (3x - 3)(3x - 5) < 0 hay 1< x < 5/3
Tìm `min:`
`C=9x^2+5-6x`
`D=1+x^2-x`
\(C=\left(9x^2-6x+1\right)+4=\left(3x-1\right)^2+4\ge4\)
\(C_{min}=4\) khi \(x=\dfrac{1}{3}\)
\(D=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(D_{min}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
\(C=9x^2+5-6x=\left(9x^2-6x+1\right)+4=\left(3x-1\right)^2+4\ge4\)
\(minC=4\Leftrightarrow x=\dfrac{1}{3}\)
\(D=1+x^2-x=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minD=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
Tìm Max, Min A= 6x+8/x^2+1
Ta có :
\(A=\dfrac{6x+8}{x^2+1}\)
\(=\dfrac{\left(x^2+6x+9\right)-\left(x^2+1\right)}{x^2+1}\)
\(=\dfrac{\left(x+3\right)^2}{x^2+1}-1\)
Vì \(\left(x+3\right)^2\ge0\) nên \(\dfrac{\left(x+3\right)^2}{x^2+1}\)
nên \(\dfrac{\left(x+3\right)^2}{x^2+1}-1\ge-1\) hay \(A>-1\)
Dấu ' = ' xảy ra khi \(x=-3\)
Vậy \(A_{min}=-1\) khi \(x=-3\)
Ta có :
\(A=\dfrac{6x+8}{x^2+1}\)
\(=\dfrac{\left(-9+6x-1\right)\left(9x^2+9\right)}{x^2+1}\)
\(=-\dfrac{\left(3x-1\right)^2}{x+1}+9\)
Vì \(-\dfrac{\left(3x-1\right)^2}{x^2+1}\le0\) nên \(-\dfrac{\left(3x-1\right)^2}{x^2+1}+9\le9\)
Dấu '' = '' xảy ra khi \(x=\dfrac{1}{3}\)
Vậy \(A_{max}=9\) khi \(x=\dfrac{1}{3}\)