Phân tích đa thức thành nhân tử
\(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
phân tích đa thức thành nhân tử:
\(a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(a^4\left(b^2-c^2\right)+b^4\left(c^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)+b^4\left(c^2-b^2+b^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)+b^4\left(c^2-b^2\right)+b^4\left(b^2-a^2\right)+c^4\left(a^2-b^2\right)\)
\(=a^4\left(b^2-c^2\right)-b^4\left(b^2-c^2\right)-b^4\left(a^2-b^2\right)+c^4\left(a^2-b^2\right)\)
\(=\left(a^4-b^4\right)\left(b^2-c^2\right)+\left(c^4-b^4\right)\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)\left(b^2-c^2\right)-\left(b^2-c^2\right)\left(c^2+b^2\right)\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(b^2-c^2\right)\left(a^2+b^2-c^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(b^2-c^2\right)\left(a^2-c^2\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(b-c\right)\left(b+c\right)\left(a-c\right)\left(a+c\right)\)
Phân tích đa thức thành nhân tử :
\(\left(a-x\right)y^3-\left(a-y\right)x^3+\left(x-y\right)a^3\)
\(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
Phân tích đa thức sau thành nhân tử:
a) \(a^2.\left(b-c\right)+b^2.\left(c-a\right)+c^2\left(a+b\right)\)
b)\(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
c)\(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
Phân tích đa thức sau thành nhân tử:
\(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
Mình đang cần bài gấp,
Trưa đi học rồi nha !
\(a^4\left(b-c\right)+b^4\left(c-a\right)+c^4\left(a-b\right)\)
\(=a^4\left(b-c\right)+b^4[\left(c-b\right)-\left(a-b\right)]+c^4\left(a-b\right)\)
\(=a^4\left(b-c\right)+b^4\left(c-b\right)-b^4\left(a-b\right)+c^4\left(a-b\right)\)
\(=a^4\left(b-c\right)-b^4\left(b-c\right)-b^4\left(a-b\right)+c^4\left(a-b\right)\)
\(=\left(b-c\right)\left(a^4-b^4\right)-\left(a-b\right)\left(c^4-b^4\right)\)
\(=\left(b-c\right)\left(a^2-b^2\right)\left(a^2+b^2\right)-\left(a-b\right)\left(c^2-b^2\right)\left(c^2+b^2\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)+\left(a-b\right)\left(b-c\right)\left(c+b\right)\left(c^2+b^2\right)\)
\(=\left(b-c\right)\left(a-b\right)[\left(a+b\right)\left(a^2+b^2\right)+\left(c+b\right)\left(c^2+b^2\right)]\)
Phân tích đa thức thành nhân tử:
\(\left[4abcd\left(a^2+b^2\right)\left(c^2+d^2\right)\right]^2-4\left[cd\left(a^2+b^2\right)+ab\left(c^2+d^2\right)\right]^2\)
Phân tích đa thức sau thành nhân tử
\(C=bc\left(a+d\right)\left(b-c\right)+ac\left(b+d\right)\left(c-a\right)+ab\left(c+d\right)\left(a-b\right)\)
\(C=c\left[b\left(a+d\right)\left(b-c\right)+a\left(b+d\right)\left(c-a\right)\right]+ab\left(c+d\right)\left(a-b\right)\)
\(C=c\left[\left(ab+bd\right)\left(b-c\right)+\left(ab+ad\right)\left(c-a\right)\right]+ab\left(c+d\right)\left(a-b\right)\)
\(C=c\left[ab^2-abc+b^2d-bcd+abc-a^2b+acd-a^2d\right]+ab\left(c+d\right)\left(a-b\right)\)
\(C=c\left[\left(ab^2-a^2b\right)+\left(b^2d-a^2d\right)+\left(acd-bcd\right)\right]+ab\left(c+d\right)\left(a-b\right)\)
\(C=c\left[ab\left(b-a\right)+d\left(a+b\right)\left(b-a\right)+cd\left(a-b\right)\right]+ab\left(c+d\right)\left(a-b\right)\)
\(C=c\left(a-b\right)\left(-ab-da-db+cd\right)+ab\left(c+d\right)\left(a-b\right)\)
\(C=\left(a-b\right)\left(-abc-acd-bcd+c^2d+abc+abd\right)\)
\(C=\left(a-b\right)\left(-acd-bcd+abd+c^2d\right)\)
\(C=c\left(a-b\right)\left(c^2+ab-ac-bc\right)\)
\(C=c\left(a-b\right)\left[\left(c^2-ac\right)-\left(bc-ab\right)\right]\)
\(C=c\left(a-b\right)\left[c\left(c-a\right)-b\left(c-a\right)\right]\)
\(C=c\left(a-b\right)\left(c-a\right)\left(c-b\right)\)
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
phân tích đa thức đa thức thành nhân tử
Phân tích đa thức thành nhân tử:
a. \(x^4+5x^3+10x-4\)
b. \(\left(a+b-2c\right)^3+\left(b+c-2a\right)^3+\left(c+a-2b\right)^3\)
a, \(x^4+5x^3+10x-4=x^4+5x^3-2x^2+2x^2+10x-4\)
\(=x^2\left(x^2+5x-2\right)+2\left(x^2+5x-2\right)=\left(x^2+2\right)\left(x^2+5x-2\right)\)
b, Câu hỏi của Subin - Toán lớp 8 - Học toán với OnlineMath
phân tích đa thức sau thành nhân tử
\(a\left(b+c\right)^2\left(b-c\right)+b\left(c+a\right)^2\left(c-a\right)+c\left(a+b\right)^2\left(a-b\right)\)
phân tích đa thức thành nhân tử
\(A\left(a;b;c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)
A = a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+3abc
= (a^2b+ab^2+abc)+(b^2c+bc^2+abc)+(c^2a+ca^2+abc)
= (a+b+c).(ab+bc+ca)
k mk nha
( a + b ) ( b + c ) ( c + a ) + abc
= ( ab + ac + b^2 + bc ) ( c + a ) + abc
= ( c + a ) ( ab + ac + b^2 + bc ) + abc
= abc + ac^2 + b^2c + bc^2 + a^2b + a^2c + ab^2 + abc + abc
= 3abc + a . c^2 + b^2 . c + b . c^2 + a^2 . b + a^2 . c + a . b^2
= 3abc + c^2( a + b ) + b^2( c + a ) + a^2 ( b + c )