Cho góc xOy = 50, một điểm A bất kì nằm trong góc đó. Vẽ điểm B đối xứng vs A qua tia Õ, vẽ điểm C đối xứng với điểm A qua tia Oy. Tính số đo của góc BOC
cho các góc xoy có số đo 50o điểm a nằm trong góc đó vẽ điểm B đối xứng với A qua Õ ,vẽ điểm C đối xứng với A qua oy
Cho góc xOy có số đo là 50 độ, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) So sánh cáo các độ dài của OB và OC.
b) Tính số đo góc BOC.
Cho góc xOy có số đo 50o, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) So sánh các độ dài OB và OC
b) Tính số đo góc BOC
a) + B đối xứng với A qua Ox
⇒ Ox là đường trung trực của AB
⇒ OA = OB (1)
+ C đối xứng với A qua Oy
⇒ Oy là đường trung trực của AC
⇒ OA = OC (2)
Từ (1) và (2) suy ra OB = OC (= OA)
b) + ΔOAC cân tại O có Oy là đường trung trực
⇒ Oy đồng thời là đường phân giác
+ ΔOAB cân tại O có Ox là đường trung trực
⇒ Ox đồng thời là đường phân giác
Cho góc xOy. Điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy. Tính số đo góc xOy để B đối xứng với C qua O.
Để B đối xứng với Cqua O thì x O y ^ = 900
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy. Tính số đo góc xOy để B đối xứng với C qua O
Vì OB = OC nên để điểm B đối xứng với C qua tâm O cần thêm điều kiện B, O, C thằng hàng
∆ OAB cân tại O có Ox là đường trung trực của AB nên Ox cũng là đường phân giác của ∠ (AOB) ⇒ ∠ O 1 = ∠ O 4 (3)
ΔOAC cân tại O có Oy là đường trung trực của AC nên Oy cũng là đường phân giác của ∠ (AOC) ⇒ ∠ O 2 = ∠ O 3 (4)
Vì B, O, C thẳng hàng nên:
∠ O 1 + ∠ O 2 + ∠ O 3 + ∠ O 4 = 180 0 (5)
Từ (3),(4) ; (5) ⇒ 2 ∠ O 1 + 2 ∠ O 2 = 180 0
⇒ ∠ O 1 + ∠ O 2 = 90 0 ⇒ ∠ (xOy) = 90 0
Vậy ∠ (xOy) = 90 0 thì B đối xứng với C qua O
Cho góc xOy có số đo \(50^0\), điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy
a) So sánh các độ dài OB và OC
b) Tính số đo góc BOC
Bài giải:
a) Ox là đường trung trực của AB nên OA = OB.
Oy là đường trung trực của AC nên OA = OC.
Suy ra OB = OC.
b) ∆AOB cân tại O (vì OA = OB).
Suy ra ˆO1O1^= ˆO2O2^= 12ˆAOB12AOB^
∆AOC cân tại O (vì OA = OC)
Suy ra ˆO3O3^= ˆO4O4^= 12ˆAOC12AOC^
Do đó ˆAOBAOB^ +ˆAOCAOC^ = 2(ˆO1O1^+ˆO3O3^)
= 2ˆxOyxOy^
= 2.500
=1000
Vậy ˆBOCBOC^ = 1000
cho góc xOy có số đo 50 độ điểm A nằm trong góc đó vẽ điểm B đối xứng với A qua Ox vẽ điểm C xúng với A qua Oy
a) so sánh các độ dài OB và OC
b) tính số đo góc BOC
Giải :
a, Oxlaf đường trung trực của AB nên OA=OB
Oy là đường trung trực của AC nên OA=OC
=> OB=OC
b, Xét tg AOB cân tại O ( do OA=OB )
=> góc O1= góc O2 = 1/2 góc AOB
Xét tg AOC cân tại o ( vì OA=OC )
=> góc O3 = góc O4 = 1/2 góc AOC
nên góc AOB+ góc AOC= 2 (góc O1+góc O3)
= 2.góc xOy
= 2.50 độ
= 100 độ
Vậy góc BOC = 100 độ
( Hình thì dễ nên bạn tự vẽ nhé )
Cho góc xOy có số đo 50o, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) So sánh các độ dài OB và OC
b) Tính số đo góc BOC
Cho góc xOy, điểm A nằm trong góc đó. Vẽ điểm B đối xứng với A qua Ox, vẽ điểm C đối xứng với A qua Oy.
a) Chứng minh rằng OB = OC
b) Tính số đo góc xOy để B đối xứng với C qua O