Cho tứ giác lồi ABCD có M, N là trung điểm AB, CD; I, K là trung điểm đường chéo AC, BD. Chứng minh rằng tứ giác MINK là hình bình hành.
Cho tứ giác lồi ABCD, M, N lần lượt là trung điểm của AB, CD. H là hình chiếu
của M trên CD, K là hình chiếu của N trên AB. CMR SABCD = 1/2
( MH.CD + NK.AB) .
Cho tứ giác lồi ABCD. Gọi M, N, E, F theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác MNEF là hình gì? Vì sao?
Bạn tra gu gồ được mà,hỏi làm gì cho mệt chớ,tìm được cách làm trên gu gồ là áp dụng vào bài thôi
noi A vs C ,BvsC
ap dung tinh chat duong trug binh cua tam giac
AM=EN
MN=FE
MNEF la hinh thoi
Cho tứ giác lồi ABCD, lấy E và F là trung điểm của AB và CD. Biết EF chia tứ giác ABCD thành hai tứ giác có diện tích bằng nhau. Chứng minh tứ giác ABCD là hình thang.
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
Cho tứ giác lồi ABCD có M,N là trung điểm của AB và CD. Chứng mình MN \(\le\frac{BC+AD}{2}\)
xét trường hợp tứ giác lồi ABCD không phải là hình thang
nối BD , gọi I là trung điểm của BD
xét tam giác ABD ta được
M là trung điểm AB (GT)
I là trung điểm của BD ( như cách gọi)
=> MI là đường trung bình của tam giác ABD
=> MI // AD ; MI = 1/2 AD (1)
xét tam giác DBC ta có
I là trung điểm của BD ( như cách gọi)
N là trung điểm của CD ( GT)
=> NI là đường trung bình của tam giác DBC
=> NI //BC ; NI = 1/2BC (2)
cộng theo vế của (1) và (2) ta được
NI + MI = 1/2 (AD + BC) hay \(MI+NI=\frac{BC+AD}{2}\)(3)
vì ABCD không phải là hình thang nên I không thuộc MN hay 3 điểm I,M,N không thẳng hàng. Ta được tam giác MIN.
áp dụng định lí bất đẳng thức tm giác vào tm giác MIN ta có
MN < MI + NI (4)
kết hợp (3) và (4) ta được
\(MN<\frac{BC+AD}{2}\)(5)
* Xét trường hợp ABCD là hình thang ( AD // BC)
ta có
M là trung điểm AB,
N là trung điểm CD
=> MN là đường trung bình của hình thang ABCD
=> \(MN=\frac{BC+AD}{2}\) (6)
kết hợp (5) và (6) ta được
\(MN\le\frac{BC+AD}{2}\)
Cho tứ giác lồi ABCD có AB = CD góc A bằng 70 độ góc C bằng 50 độ Gọi M N lần lượt là trung điểm của BC và AD Tính góc ANM
Cho tứ giác lồi ABCD, lấy E và F là trung điểm của AB và CD. Biết EF chia tứ giác ABCD thành hai tứ giác có diện tích bằng nhau. Chứng minh tứ giác ABCD là hình thang.
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
các câu hỏi trên online math bạn tự tìm hiểu
Cho tứ giác lồi ABCD trong đó AB vuông góc với BC.gọi M,N,P,Q lần lượt là trung điểm của AB,Bc,CD,DA. Biết MP+NQ lớn hơn hoặc bằng ½(AB+CD+BC+DA)
CMR) ABCD là Hình chữ nhật
Cho tứ giác lồi ABCD. Gọi M,N,P,Q,E,F lần lượt là trung điểm của AB , CD, AD, BD, AC. BC CMR: MN, PQ, EF đồng quy.
Ta có : Tứ giác MPNQ là hình bình hành
MN và PQ cắt nhau tại trung điểm I của mỗi đường
Ta có : Tứ giác EPFQ là hình bình hành
EF đi qua I
Vậy EF , MN và PQ đồng quy
Cho tứ giác lồi ABCD , 2 đường chéo AC và BD vuông góc với nhau biết AC=m , BD=n , gọi EF là trung điểm của AB và CD . Tính EF