Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Tuệ Minh
Xem chi tiết
Phùng Gia Huy
Xem chi tiết
Yen Nhi
20 tháng 4 2021 lúc 18:29

\(B\left(1-x\right)\left(3x+4\right)\)

\(\rightarrow B=\frac{1}{3}\left(3-3x\right)\left(3x+4\right)\)

\(\rightarrow B\text{⩽ }\frac{1}{3}\left(\frac{3-3x+3x+4}{2}\right)^2\)

\((BTD\)\(AM-GM)\)

\(\rightarrow B\text{⩽ }\frac{1}{3}.\frac{49}{4}\)

\(\rightarrow B\text{⩽ }\frac{49}{12}\)

Dấu '' = '' xảy ra \(\Leftrightarrow3-3x=3x+4\Leftrightarrow-\frac{1}{6}\)

Vậy \(max\)\(B=\frac{49}{12}\Leftrightarrow x=-\frac{1}{6}\)

Khách vãng lai đã xóa
ミ★Zero ❄ ( Hoàng Nhật )
20 tháng 4 2021 lúc 19:21

\(B=\left(1-x\right).\left(3x+4\right)\)

Ta có :

\(B=3x+4-3x^2-4x\)

\(B=-3x^2-x+4\)

\(B=-3\left(x^2+\frac{1}{3}x-\frac{4}{3}\right)\)

\(B=-3\left(x^2+2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}-\frac{4}{3}\right)\)

\(B=-3\left[\left(x+\frac{1}{6}\right)^2-\frac{49}{36}\right]\)

Vì \(\left(x+\frac{1}{6}\right)^2\ge0\)

\(\Rightarrow\left(x+\frac{1}{36}\right)^2-\frac{49}{36}\ge-\frac{49}{36}\)

\(\Rightarrow B\le\frac{49}{12}\)

\(\Rightarrow\)GTLN của B là \(\frac{49}{12}\)Khi \(x=-\frac{1}{6}\)

Khách vãng lai đã xóa
Cao Thị Thùy Dung
Xem chi tiết
Cao Thị Thùy Dung
Xem chi tiết
Nguyễn Lê Minh Hoàng
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
nguyenquocthanh
22 tháng 10 2019 lúc 19:54

toi ko bt

Khách vãng lai đã xóa
ღ๖ۣۜLinh
22 tháng 10 2019 lúc 19:58

A= -4 - x^2 +6x

  =-(x2-6x+9)+5

=-(x-3)2+5\(\le\)5

Dấu "=" xảy ra khi x=3

Vậy...............

B= 3x^2 -5x +7

\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)

\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)

Dấu "=" xảy ra khi \(x=\frac{5}{6}\)

Vậy.................

Khách vãng lai đã xóa
Dragneel Lucy
Xem chi tiết
Nguyễn Huy Tú
8 tháng 6 2017 lúc 20:11

Đặt \(A=-3x^2+2x-1\)

\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)

\(=-3\left(x^2-2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)

\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{2}{9}\right]\)

\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\)

Ta có: \(-3\left(x-\dfrac{1}{3}\right)^2\le0\)

\(\Rightarrow A=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\le\dfrac{-2}{3}\)

Dấu " = " xảy ra khi \(-3\left(x-\dfrac{1}{3}\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)

Vậy \(MAX_A=\dfrac{-2}{3}\) khi \(x=\dfrac{1}{3}\)

Trần Thị Mỹ Duyên
8 tháng 6 2017 lúc 20:04

Gtnn và gtln là j vậy ?

Young Forever ebxtos
Xem chi tiết
»βέ•Ҫɦαηɦ«
13 tháng 7 2017 lúc 19:40

Ta có : A = x2 - x + 2

=> \(A=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)

\(\Rightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Vậy Amin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)

Nguyễn Phương Linh
13 tháng 7 2017 lúc 19:47

A = x2 - x + 2 = x2 - 2.x.1 + 1+ 1 = ( x+1)2 + 1

Ta có: ( x+1)2 \(\ge\)0 ( với mọi x)

 => ( x+1)2 + 1 \(\ge\)1  khi với mọi x)

Dấu "=" xảy ra khi ( x+1)2 = 0

 => x + 1 = 0 -> x= -1

Vậy GTNN của biểu thức A = x2 - x + 2 là 1 khi x = -1

Jackson
5 tháng 6 2019 lúc 12:06

A= xx2 -x +2

2= 8/4

=> x2 -2 . 1/2 x + (1/2)2 + 7/4

=> (x - 1/2)2 + 7/4

Không tin thì thử khai triển ra nhé!

Lê Hữu Nhân
Xem chi tiết
Nguyễn Huy Tú
20 tháng 8 2021 lúc 20:54

\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)

\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)

Dấu ''='' xảy ra khi x = 3/4 

Vậy GTNN của A bằng 7/8 tại x = 3/4 

Khách vãng lai đã xóa