tìm GTLN hoặc GTNN của biểu thức sau:
3x - 3x2 - 1
Tìm GTLN ( hoặc GTNN ) của biểu thức sau: \(\frac{6x-2}{3x^2+1}\)
Tìm GTLN hoặc GTNN của biểu thức: B=(1-x)(3x+4)
\(B\left(1-x\right)\left(3x+4\right)\)
\(\rightarrow B=\frac{1}{3}\left(3-3x\right)\left(3x+4\right)\)
\(\rightarrow B\text{⩽ }\frac{1}{3}\left(\frac{3-3x+3x+4}{2}\right)^2\)
\((BTD\)\(AM-GM)\)
\(\rightarrow B\text{⩽ }\frac{1}{3}.\frac{49}{4}\)
\(\rightarrow B\text{⩽ }\frac{49}{12}\)
Dấu '' = '' xảy ra \(\Leftrightarrow3-3x=3x+4\Leftrightarrow-\frac{1}{6}\)
Vậy \(max\)\(B=\frac{49}{12}\Leftrightarrow x=-\frac{1}{6}\)
\(B=\left(1-x\right).\left(3x+4\right)\)
Ta có :
\(B=3x+4-3x^2-4x\)
\(B=-3x^2-x+4\)
\(B=-3\left(x^2+\frac{1}{3}x-\frac{4}{3}\right)\)
\(B=-3\left(x^2+2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}-\frac{4}{3}\right)\)
\(B=-3\left[\left(x+\frac{1}{6}\right)^2-\frac{49}{36}\right]\)
Vì \(\left(x+\frac{1}{6}\right)^2\ge0\)
\(\Rightarrow\left(x+\frac{1}{36}\right)^2-\frac{49}{36}\ge-\frac{49}{36}\)
\(\Rightarrow B\le\frac{49}{12}\)
\(\Rightarrow\)GTLN của B là \(\frac{49}{12}\)Khi \(x=-\frac{1}{6}\)
Tìm GTNN hoặc GTLN của các biểu thức sau:
E= 3x^2 + y^2 +2xy -2x -4y +20
Tìm GTNN hoặc GTLN của các biểu thức sau:
E= 3x^2 + y^2 +2xy -2x -4y +20
Tìm GTNN hoặc GTLN của biểu thức sau
M=3x^4+y^2-2x^2y-2x^2-2y+31
Tìm GTNN hoặc GTLN của biểu thức sau:
A= -4 - x^2 +6x
B= 3x^2 -5x +7
A= -4 - x^2 +6x
=-(x2-6x+9)+5
=-(x-3)2+5\(\le\)5
Dấu "=" xảy ra khi x=3
Vậy...............
B= 3x^2 -5x +7
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)
Dấu "=" xảy ra khi \(x=\frac{5}{6}\)
Vậy.................
1/Tìm gtnn hoặc gtln của biểu thức sau
-3x²+2x-1
Đặt \(A=-3x^2+2x-1\)
\(=-3\left(x^2-\dfrac{2}{3}x+\dfrac{1}{3}\right)\)
\(=-3\left(x^2-2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=-3\left[\left(x-\dfrac{1}{3}\right)^2+\dfrac{2}{9}\right]\)
\(=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\)
Ta có: \(-3\left(x-\dfrac{1}{3}\right)^2\le0\)
\(\Rightarrow A=-3\left(x-\dfrac{1}{3}\right)^2-\dfrac{2}{3}\le\dfrac{-2}{3}\)
Dấu " = " xảy ra khi \(-3\left(x-\dfrac{1}{3}\right)^2=0\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(MAX_A=\dfrac{-2}{3}\) khi \(x=\dfrac{1}{3}\)
1,TÌm GTNN hoặc GTLN của các biểu thức sau:
A=x2-x+2
B=3x2-5x+3
Ta có : A = x2 - x + 2
=> \(A=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(\Rightarrow A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Vậy Amin = \(\frac{3}{4}\) , dấu "=" xảy ra khi và chỉ khi x = \(\frac{1}{2}\)
A = x2 - x + 2 = x2 - 2.x.1 + 12 + 1 = ( x+1)2 + 1
Ta có: ( x+1)2 \(\ge\)0 ( với mọi x)
=> ( x+1)2 + 1 \(\ge\)1 khi với mọi x)
Dấu "=" xảy ra khi ( x+1)2 = 0
=> x + 1 = 0 -> x= -1
Vậy GTNN của biểu thức A = x2 - x + 2 là 1 khi x = -1
A= xx2 -x +2
2= 8/4
=> x2 -2 . 1/2 x + (1/2)2 + 7/4
=> (x - 1/2)2 + 7/4
Không tin thì thử khai triển ra nhé!
Tìm GTLN hoặc GTNN (nếu có) của biểu thức
A = 2x2 - 3x + 2
\(A=2x^2-3x+2=2\left(x^2-\frac{3}{2}x\right)+2\)
\(=2\left(x^2-2.\frac{3}{4}x+\frac{9}{16}-\frac{9}{16}\right)+2=2\left(x-\frac{3}{4}\right)^2-\frac{9}{8}+2\ge\frac{7}{8}\)
Dấu ''='' xảy ra khi x = 3/4
Vậy GTNN của A bằng 7/8 tại x = 3/4