Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn My
Xem chi tiết
Nguyễn My
Xem chi tiết
Trang Hà
Xem chi tiết
Nguyễn Minh Quang
16 tháng 7 2021 lúc 14:23

Để M có nghĩa thì \(\hept{\begin{cases}\sqrt{x}-3\ne0\\2-\sqrt{x}\ne0\\x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}}\)

ta có \(M=\frac{2\sqrt{x}-9+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(M=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

b.\(M=5=\frac{\sqrt{x}+1}{\sqrt{x}-3}\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)

Khách vãng lai đã xóa
nhi ka
Xem chi tiết
Huy Viên
Xem chi tiết
Quỳnh Đặng Diễm
Xem chi tiết
nguyen ngoc son
Xem chi tiết
YangSu
10 tháng 4 2022 lúc 21:40

\(\left(đk:x\ne\pm1\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}}{x-1}\)

Minh Kún
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 0:52

a: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)

\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)

\(=\dfrac{-1}{x-2}\)

b: Để M đạt giá trị lớn nhất thì x-2=-1

hay x=1

c: Để M=3x thì \(\dfrac{-1}{x-2}=3x\)

\(\Leftrightarrow3x^2-6x+1=0\)

\(\text{Δ}=\left(-6\right)^2-4\cdot3\cdot1=36-12=24\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{6}}{6}=\dfrac{3-\sqrt{6}}{3}\\x_2=\dfrac{3+\sqrt{6}}{3}\end{matrix}\right.\)

Thùy Trinh Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 5 2022 lúc 12:43

a: \(B=3\sqrt{x-3}+\sqrt{x-3}-\dfrac{1}{2}\cdot2\sqrt{x-3}=3\sqrt{x-3}\)

b: B=7 thì \(\sqrt{x-3}=\dfrac{7}{3}\)

=>x-3=49/9

hay x=76/9