chứng mminh rằng: 11111..1112222...2225 ( n chữ số 1; n+1 chữ số2) là số chính phương
chứng minh rằng các số sau đây là số chính phương
C=11111....1(2n chữ số 1)+11111....1(n+1 chữ số 1)+66666...6(n chữ số 6)+8
D=44....48888...89(n chữ số 4, n-1 chữ số 8)
Bài 1: Cho số A =11...11122...2225 ( 2005 chữ số 1 và 2006 chữ số 2). Chứng minh rằng A là số chính phương
ta có
\(A=111..1000..0+222..2+3=10^{2007}\left(1+10+..+10^{2004}\right)+2.\left(1+10+..+10^{2006}\right)+3\)
\(=10^{2007}.\frac{10^{2005}-1}{9}+2.\frac{10^{2007}-1}{9}+3=\frac{10^{2.2006}-10.10^{2006}+25}{9}=\left(\frac{10^{2006}-5}{3}\right)^2\)
rõ ràng Alà số tự nhiên nên \(\left(\frac{10^{2006}-5}{3}\right)\) là số tự nhiên, vậy ta có đpcm
Cho số A= 11...11122...2225 (có 2005 chữ số 1 và 2006 chữ số 2). Chứng minh rằng A là một số chính phương
Chứng minh rằng các số sau là số chính phương
a, A = 222499...9100...09 (n-2 chữ số 9, n chữ số 0)
B= 11111...155...56 (n chữ số 1 và n-1 chữ số 5)
Cho A=11111.......12111......1 ( n thuộc N*)
n chữ số 1 n chữ số 1
Chứng minh rằng A ko phải là số nguyên tố
11...1 2 11..1 = 11...1 +11...1
n chữ số n chữ số n chữ số n chữ số
=11..1*(10n+1)
n+1
số đã cho đc phân tích thành 1 thừa số lớn hơn 1 (đfcm)
vì ta đã cm nó là hợp số
=> nó ko fai nguyên tố
a) so sánh 2225 và 3151
b) Chứng minh rằng số A = (n+1)(3n+2) chia hết cho 2 với mọi số tự nhiên n
a/ \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{151}>3^{150}=\left(3^2\right)^{75}=9^{75}\)
Mà \(8^{75}< 9^{75}\)
=> \(2^{225}< 3^{150}< 3^{151}\)
b/ Xét n là số lẻ
=> n + 1 chẵn
=> n + 1 ⋮ 2
=> (n+1)(3n+2) ⋮2
Xét n là số chẵn
=> 3n chẵn
=> 3n+2 chẵn
=> (n+1)(3n+2) ⋮2
Do đó A = (n+1)(3n+2) chia hết cho 2 với mọi số tự nhiên n
Chứng tỏ rằng 11111...1122222...2(100 chữ số 1 và 100 chữ số 2) là tích 2 số nguyên liên tiếp
Chứng minh rằng trong dãy 1,11,...,11111...1(2003 chữ số 1) có ít nhất 1 số chia hết cho 2003
Giả sử trong \(2003\)số đã cho không có số nào chia hết cho \(2003\).
Khi đó có ít nhất \(2\)số có cùng số dư khi chia cho \(2003\).
Giả sử đó là \(a=11...1\)(\(n\)chữ số \(1\)) và \(b=11...1\)(\(m\)chữ số \(1\)).
Không mất tính tổng quát, giả sử \(a>b\).
Ta có: \(a-b=11...1-11...1=11...100...0\)(\(n-m\)chữ số \(1\), \(m\)chữ số \(0\))
\(=11...1.10^m⋮2003\)
mà ta có \(\left(10^m,2003\right)=1\)suy ra \(11...1⋮2003\)(\(n-m\)chữ số \(1\))
trái với điều ta giả sử.
Do đó ta có đpcm.
cảm ơn anh nhiều ạ
cho mình biết lời giải bài này với : Chứng minh số sau là hợp số
A=11111.....11211.....11111
n chữ số 1 2 n chữ số 1