Cho a, b, x, y sao cho: ab=1, ax+ by = 2
Chứng minh rằng xy < 1
Cho a,b,x,y sao cho: ab = 1, ax + by = 2. Chứng minh rằng xy< 1
cho bốn số a,b,x,y sao cho \(ab=1;ax+by=2\)chứng minh rằng xy\(\le\)1
Cho a, x, b, y sao cho: a.b=1
ax + by = 2. Chứng minh xy <1
Cho a,b, c, x, y, z là các sô thực dương thỏa mãn điều kiện x+ y+z =1. Chứng minh
rằng:
\(ax+by+cz+2\sqrt{\left(xy+yz+zx\right)\left(ab+bc+ca\right)}\le a+b+c\)
Cho 4 so x,y,a,b sao cho ab=1, ax+ by=2. CMR: xy\(\le\) 1
Cho a;b là các số nguyên dương sao cho (a;b)=1. Chứng minh rằng N0=ab−a−bN0=ab−a−b là số nguyên lớn nhất không biểu diễn được dưới dạng ax+by với x;y là các số nguyên không âm.
Mở rộng: Chứng minh giữa 2 số nguyên n, N0−nN0−n, có đúng một trong hai số biểu diễn được dưới dạng ax+by với x, y là các số nguyên không âm.(Định lý Sylvester tem thư)
Chứng minh cụ thể giùm mình nha
Cho ax+by+cz=0 và a+b+c =1/2018 Chứng minh rằng \(\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2}\) =2018
Đặt \(A=\frac{ax^2+by^2+cz^2}{ab\left(x-y\right)^2+bc\left(y-z\right)^2+cz\left(z-x\right)}\)
Từ ax+by+cz=0
=>(ax+by+cz)2=0
=>a2x2+b2y2+c2z2+2axby+2bycz+2czax=0
=>a2x2+b2y2+c2z2=-2(ax+by+byca+czax)
Xét mẫu thức: \(ab\left(x-y\right)^2+bc\left(y-z\right)^2+ca\left(z-x\right)^2\)
\(=ab\left(x^2-2xy+y^2\right)+bc\left(y^2-2yz+z^2\right)+ca\left(z^2-2zx+x^2\right)\)
\(=abx^2-2abxy+aby^2+bcy^2-2bcyz+bcz^2+caz^2-2cazx+cax^2\)
\(=\left(abx^2+bcz^2\right)+\left(aby^2+acz^2\right)+\left(acx^2+bcy^2\right)-2\left(abxy+bcyz+cazx\right)\)
\(=\left(aby^2+acz^2\right)+\left(abx^2+bcz^2\right)+\left(acx^2+bcy^2\right)+a^2x^2+b^2y^2+c^2z^2\)
\(=\left(a^2x^2+aby^2+acz^2\right)+\left(abx^2+b^2y^2+bcz^2\right)+\left(acx^2+bcy^2+c^2z^2\right)\)
\(=a\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+c\left(ax^2+by^2+cz^2\right)\)
\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
Do đó: \(A=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{\frac{1}{2018}}=2018\) (dpcm)
Cho a,b,x,y . Sao cho ab = 1; ax + by = 2 . CMR xy\(\le1\)
Cho a,b,c,x,y,z E Z+ sao cho:
x=by+cz(1)
y=ax+cz(2)
z=ax+by(3)
Chứng minh rằng: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)
P/s:không làm theo cách của Trần Đức Thắng
cách của TĐT: http://olm.vn/hoi-dap/question/390836.html