Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Kim Thanh
Xem chi tiết
Phùng Kim Thanh
27 tháng 8 2021 lúc 16:25

giúp mik nếu đúg mik sẽ tik

 

Phùng Kim Thanh
27 tháng 8 2021 lúc 16:29

giúp mik ik

 

ILoveMath
27 tháng 8 2021 lúc 16:30

a) \(A=3+3^2+3^3+...+3^{60}\)

Vì \(3⋮3;3^2⋮3;3^3⋮3;...;3^{60}⋮3\)

\(\Rightarrow3+3^2+3^3+...+3^{60}⋮3\\ \Rightarrow A⋮3\)

b) \(A=3+3^2+3^3+...+3^{60}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\\ =\left(1+3\right)\left(3+3^3+...+5^{59}\right)\\ =4\left(3+3^3+...+5^{59}\right)⋮4\)

 

Vo Va Hien
Xem chi tiết
Hoshiko Terumi
Xem chi tiết
Trần Thanh Phương
18 tháng 11 2018 lúc 20:11


 

\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(A=2\cdot3+...+2^{99}\cdot3\)

\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)

2 ý kia tương tự

Nguyễn Minh Vũ
18 tháng 11 2018 lúc 20:13

Giải:

Đặt S=(2+2^2+2^3+...+2^100)

=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296

=2.31+26.31+...+296.31

=31.(2+26+...+296)\(⋮\)31

BÌNH HÒA QUANG
18 tháng 11 2018 lúc 20:16

Ta có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> \(A=(2+2^2)+(2^3+2^4)+...+(2^{99}+2^{100})\)

=> \(A=2(1+2)+2^3(1+2)+...+2^{99}(1+2)\)

=> \(A=2.3+2^3.3+...+2^{99}.3\)

=> \(A=(2+2^3+...+2^{99}).3\)chia hết cho 3             ( 1 )

Ta lại có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> \(A=2(1+2+2^2+2^3+...+2^{98}+2^{99})\)chia hết cho 2       ( 2 )

Từ ( 1 ) và ( 2 ) ta có :

A chia hết cho 2 . 3 hay A chia hết cho 6

Ta có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> ​\(A=\left(2+2^2+2^3+2^4+2^5\right)+....\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

=> \(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

=> \(A=2.31+...+2^{96}.31\)

=> \(A=\left(2+...+2^{96}\right)31\)chia hết cho 31

Minh Nguyễn
Xem chi tiết
Lim Nayeon
7 tháng 7 2018 lúc 15:56

a=2+2^2+2^3+...+2^10

a=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)

a=2.(1+2)+2^3.(1+2)+...+2^9.(1+2)

a=3.(2+2^3+...+2^9)

=> a chia hết cho 3

a=2+2^2+2^3+...+2^10

a=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)

a=2.(1+2+4+8+16)+2^6.(1+2+4+8+16)

a=31.(2+2^6)

=> a chia hết cho 31

chúc bạn học tốt nha

Minh Nguyễn
8 tháng 7 2018 lúc 8:58

Cảm ơn bạn nhiều nha

Đặng Yến Nhi
18 tháng 10 2022 lúc 21:24

^ nghĩa là gì

hoàng hà diệp
Xem chi tiết
Hoàng Hải Âu
30 tháng 9 2019 lúc 15:08

A=2+2^2+2^3+....+2^10:3

A=(2+2^2)+(2^3+2^4)+....+(2^9+2^10):3

A=2.(1+2)+2^3.(1+2)+...+2^9.(1+2):3

A=2.3+2^3.3+...+2^9.3:3

A=3.(2+2^3+...+2^9):3

vậy A:3 

Đỗ Thiên Ân
Xem chi tiết
Nguyễn Đăng Quyền
Xem chi tiết
Hồ Thu Giang
23 tháng 9 2015 lúc 19:11

a, A = 2+22+23+...+210

A = (2+22)+(23+24)+...+(29+210)

A = 2(1+2) + 23(1+2) +.....+ 29(1+2)

A = 2.3 + 23.3 +....+ 29.3

A = 3.(2+23+...+29) chia hết cho 3 (đpcm)

b, A = 2+22+23+...+210

A = (2+22+23+24+25)+(26+27+28+29+210)

A = 2(1+2+22+23+24) + 26.(1+2+22+23+24)

A = 2.31 + 26.31

A = 31.(2+26) chia hết cho 31 (Đpcm)

Lê Khôi Nguyên
Xem chi tiết
Mèo Con
Xem chi tiết
ngonhuminh
4 tháng 1 2017 lúc 16:30

Mình chỉ làm được ý 3 thôi: 

Asuka Kurashina
4 tháng 1 2017 lúc 16:40

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 29 + 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)

Toàn Quyền Nguyễn
6 tháng 1 2017 lúc 19:53

A = 21 + 22 + 23 + ................ + 2120

Chứng minh chia hết cho 7

A = 21 + 22 + 23 + ................ + 2120

A = (21 + 22 + 23) + (24 + 25 + 26) + ................ + (2118 + 2119 + 2120)

A = 2.(1 + 2 + 4) + 24.(1 + 2 + 4) + ................. + 2118.(1 + 2 + 4)

A = 2.7 + 24 . 7 + ................ + 2118.7

A = 7.(2 + 24 + ........... + 2118)

Chứng minh chia hết cho 31

A = 21 + 22 + 23 + ................ + 2120 

A = (21 + 22 + 23 + 24 + 25) + (26 + 27 + 28 + 2+ 210) + ................ + (2116 + 2117 + 2118 + 2119 + 2120)

A = 2.(1 + 2 + 4 + 8 + 16) + 26.(1 + 2 +4 + 8 + 16) + ............. + 2116.(1 + 2 + 4 + 8 + 16)

A = 2.31 + 26.31 + ....... + 2116 . 31

A = 31.(2 + 26 + ........... + 2116)