Chứng tỏ:
a) A = (n+3).(n+6) chia hết cho 2
b) A = (n+3100).(n+6100) chia hết cho 2
Cho số tự nhiên n chia hết co 3.Chứng tỏ:A=n^3+n^2+3 không chia hết cho 9
n chia hết cho 3 \(\Rightarrow\)n^3 nà n^2 chia hết cho 9
Mà 3 chia 9 dư 3 \(\Rightarrow\)A chia 9 dư 3
\(\Rightarrow\)A không chia hết cho 9(đpcm)
Chứng minh
A = ( n+ 2) ( n+ 5) chia hết cho 2
B = (2n + 3) (n+6 ) (5n + 2) chia hết cho 3
a: TH1: n=2k
A=(n+2)(n+5)
=(2k+2)(2k+5)
=2(k+1)(2k+5)\(⋮\)2(1)
TH2: n=2k+1
\(A=\left(n+2\right)\left(n+5\right)\)
\(=\left(2k+1+2\right)\left(2k+1+5\right)\)
\(=\left(2k+3\right)\left(2k+6\right)\)
\(=2\left(k+3\right)\left(2k+3\right)⋮2\)(2)
Từ (1),(2) suy ra \(A⋮2\)
b: TH1: n=3k
\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)
\(=\left(2\cdot3k+3\right)\left(3k+6\right)\left(5\cdot3k+2\right)\)
\(=3\left(k+2\right)\left(6k+3\right)\left(15k+2\right)⋮3\left(3\right)\)
TH2: n=3k+1
\(B=\left(2n+3\right)\left(n+6\right)\left(5n+2\right)\)
\(=\left[2\left(3k+1\right)+3\right]\left[3k+1+6\right]\left[5\left(3k+1\right)+2\right]\)
\(=\left(6k+2+3\right)\left(3k+7\right)\left(15k+5+2\right)\)
=(6k+5)(3k+7)(15k+7)
=>B không chia hết cho 3
Vậy: B không chia hết cho 3 với mọi n
Chứng tỏ:A=(n2+1)(n2-1) chia hết cho 30 với n không chia hết cho 10
Sai đề
Vd : n = 8 không chia hết cho 10
A = ( n2 + 1 ) ( n2 - 1 ) = ( 82 + 1 ) ( 82 - 1 ) = 65 * 63 = 4095 không chia hết cho 30
cho số tự nhiên n chia hết cho 3. Chứng tỏ:A=n3+n2+3 không chia hết cho 9
Ủa cái này có gì đâu:vv
Ta có: \(n⋮3\Rightarrow\left\{{}\begin{matrix}n^2⋮9\\n^3⋮9\end{matrix}\right.\) \(\Rightarrow n^3+n^2⋮9\)
Mà 3\(⋮̸9\) -> \(n^3+n^2+3⋮̸9\)
-> Đpcm
Bài 1 : Chứng minh a + 2b chia hết cho 3 khi và chỉ khi b + 2a cũng chia hết cho 3
Bài 2 : Chứng tỏ rằng với mọi số tự nhiên n ta có :
a, ( n + 10 ) ( n + 15 ) chia hết cho 2
b, n^3 + 5n chia hết cho 6
c, ( 3^100 + 19^990 ) chia hết cho 2
d, ( 3^1993 - 2^157 ) không chia hết cho 2
Bài 1 :
Ta có : 3a + 3b và a + 2b đều chia hết cho 3
=> ( 3a + 3b ) - ( a + 2b ) chia hết cho 3
=> 2a + b chia hết cho 3 ( đpcm )
Bài 2 :
Mình có sách có bài này nhưng mà chưa học nên cũng không hiểu . Nếu bạn cần thì cứ nói với mình mình sẽ giúp
hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
bài 2
a, ta có 2 TH:
+)n là số chẵn =>n+10 chia hết cho 2
+)n là số lẻ =>n+15 chia hết cho 2
Chứng tỏ:A=n3 +17n chia hết cho 6
a, Cho a;b€N thỏa mãn: (11a+2b)chia hết cho 12.Chứng tỏ a+34b chia hết cho 12.
b, Cho a;b€N thỏa mãn: (2a+7b) chia hết cho 3.Chứng tỏ (4a+2b) chia hết cho 3.
Giúp mình nha!!!
Giả sử (4a+2b)⋮3(4a+2b)⋮3
⇒(4a+2b)+(2a+7b)⋮3⇒(4a+2b)+(2a+7b)⋮3
⇒(6a+9b)⋮3⇒(6a+9b)⋮3 (đúng)
=> Giả sử đúng
Vậy (4a+2b)⋮3
chứng tỏ:a(3100+19990) chia hết cho 3
b.tổng 4 số tự nhiên liên tiếp không chia hết cho 4
lộn nha (3^100+19^990) chia hết cho 3
a. Ta có : 3100 + 19990 = 23090 có tổng các chữ số là : 2 + 3 + 0 + 9 + 0 = 14
Vì 14 \(⋮̸\)3 nên 3100 + 19990 \(⋮̸\)3 => đpcm
Vậy 3100 + 19990 không chia hết cho 3
b. Gọi 4 số tự nhiên liên tiếp đó là : n , n +1 , n + 2 , n + 3 ( n \(\inℕ\))
Do đó tổng 4 số tự nhiên liên tiếp là : n + ( n + 1 ) + ( n + 2 ) + ( n + 3 ) = n + n + 1 + n + 2 + n + 3
= ( n + n + n + n ) + ( 1 + 2 + 3 )
= 4n + 6
Ta thấy 4n \(⋮\)4 mà 6 \(⋮̸\)4 nên 4n + 6 \(⋮̸\)4 => đpcm
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Hok tốt
# owe
a. Ta thấy : \(3\equiv0\left(mod3\right)\Rightarrow3^{100}\equiv0^{100}\equiv0\left(mod3\right)\)
\(19\equiv1\left(mod3\right)\Rightarrow19^{990}\equiv1^{990}\equiv1\left(mod3\right)\)
Do đó \(3^{100}+19^{990}\equiv0+1\equiv1\left(mod3\right)\)
Vậy 3100 + 19990 chia 3 dư 1
. Cho A= 120b+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.
1)Ta có \(A=12.\left(10a+3b\right)\)( đã sửa 120b thành 120a )
Vì\(a,b\in N\Rightarrow10a+3b\in N\)
Do đó\(12.\left(10a+3b\right)⋮12\)
Vậy\(A⋮12\)
2)
a) Ta có \(2a+7b=2a+b+6b=\left(2a+b\right)+6b\)chia hết cho 3
Có \(6b⋮3\)mà\(\left(2a+b\right)+6b⋮3\)nên \(2a+b⋮3\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
\(2a+b⋮3\Rightarrow2.\left(2a+b\right)⋮3\)\(\Rightarrow4a+2b⋮3\)
b) Ta có \(a+b⋮2\)lại có \(2b⋮2\)
nên \(\left(a+b\right)+2b⋮2\)hay\(a+3b⋮2\)
c) Ta có \(12a⋮12\);\(36b⋮12\)
nên \(12a+36b⋮12\)
Mà \(12a+36b=\left(11a+2b\right)+\left(a+34b\right)\)
nên \(\left(11a+2b\right)+\left(a+34b\right)⋮12\)
\(11a+2b⋮12\)\(\Rightarrow a+34b⋮12\)( \(A+B⋮C\)mà\(B⋮C\)\(\Rightarrow A⋮C\))
d) 1\(12b⋮12\)là điều hiển nhiên nên thiếu giả thiết để chứng minh
P/S Sai đề rất nhiều, mong bạn trước khi đăng hãy kiểm tra lại đề hoặc xem thử có bị cô troll hay không
1. Cho A= 120b+36b với a,b thuộc N. Chứng tỏ A: 12
2. Cho a,b thuộc N. Chứng tỏ:
a. 4a+2b chia hết cho 3 biết 2a+ 7b chia hết cho 3
b. a+ 3a chia hết cho 2 biết a+b chia hết cho 2.
c. a+ 34b chia hết cho 12 biết 11a+ 2b chia hết cho 12.
d. 9a+ 13b chia hết cho 12 biết 12b chia hết cho 12.