Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trinh thi hang
Xem chi tiết
nguyễn bích thuỳ
Xem chi tiết
Ngô Bảo Châu
Xem chi tiết
Ngô Bảo Châu
4 tháng 7 2015 lúc 21:48

Trong sách toán học và tuổi trẻ, mình làm bài này rồi nhưng không biết đúng không nữa nếu bạn biết thì cho mình biết kết quả nha!

Nguyễn Phương Anh
Xem chi tiết
Đoàn Đức Hà
19 tháng 7 2021 lúc 11:10

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương. 

Khách vãng lai đã xóa
duong khiem
Xem chi tiết
Đỗ Tuệ Lâm
29 tháng 12 2021 lúc 8:40

\(a,=2x^2-\dfrac{3}{2}y+3x\)

\(b,\)bt để chia hết cho x+2 là:\(2x^3+x^2-x+10\)

\(\Rightarrow m=12\)

Nhóc_Siêu Phàm
Xem chi tiết
Hypergon
Xem chi tiết
Đoàn Phương Liên
Xem chi tiết
Nguyễn Văn Tuấn Anh
13 tháng 7 2019 lúc 14:33

\(4x^2+y^2-2x-y-2xy+1=1\) 

\(\Leftrightarrow4x^2-4xy+y^2-2x-y+2xy=0\) 

\(\Leftrightarrow\left(2x-y\right)^2-2x-y+2xy=0\) 

\(\Leftrightarrow x\left[\left(2x-y\right)-2x-y+2xy\right]=0\) 

\(\Leftrightarrow x\left(2x-y\right)^2-2x^2+xy=0\) 

\(\Leftrightarrow x\left[\left(2x-y\right)^2-2x+y\right]=0\) 

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(2x-y\right)^2-2x+y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(2.0-y\right)^2-2.0+y=0\end{cases}}}\) (thay x=0 vào biểu thức dưới)

\(\Leftrightarrow x=0\) hoặc  \(y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}\)  (mà x;y nguyên dương )=>y=0

Vậy x=0 ;y=0

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\left(tm\right)\\y=-1\left(ktm\right)\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\y^2+y=0\Leftrightarrow\orbr{\begin{cases}y=0\left(tm\right)\\y=-1\left(ktm\right)\end{cases}}\end{cases}}\)

Đoàn Phương Liên
13 tháng 7 2019 lúc 22:10

Bạn sai rồi nhé. Khi ta giải đc x=0 ở Th1 thì không được áp dụng x=0 ở th2

HoangJVan
Xem chi tiết
♛☣ Peaceful Life ☣♛
12 tháng 2 2020 lúc 20:47

b)\(2n-1⋮n+1\)\(\left(n\inℤ\right)\)

\(\Rightarrow2n+2-3⋮n+1\)

\(\Rightarrow2.\left(n+1\right)-3⋮n+1\)\(2.\left(n+1\right)⋮n+1\)

\(\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n+1\in\left\{-1;1;-3;3\right\}\)

\(\Rightarrow n\in\left\{-2;0;-4;2\right\}\)

Vậy \(n\in\left\{-2;0;-4;2\right\}\)

Chúc bạn học tốt !

Khách vãng lai đã xóa