1.a,b,c là các số thực dương. CM \(\left(\dfrac{\sqrt{ab}}{\sqrt{a+b}}+\dfrac{\sqrt{bc}}{\sqrt{b+c}}\right)\left(\dfrac{1}{\sqrt{a+b}}+\dfrac{1}{\sqrt{b+c}}\right)\le2\)
2. x,y là các số nguyên sao cho \(x^2-2xy-y^2\) ;\(xy-2y^2-x\) đều chia hết cho 5Chứng minh \(2x^2+y^2+2x+y\) cũng chia hết cho 5
3. cho \(a_1a_2...a_{50}\) là các số nguyên thoả mãn \(1\le a_1\le a_2...\le a_{50}\le50;a_1+a_2+...+a_{50}=100\) chứng minh rằng từ các số đã cho có thể chọn đc một vài số có tổng là 50
Tìm x,y nguyên dương x,y>1 sao cho 2xy-1 chia hết cho (x-1)*(y-1)
tìm các số nguyên dương x, y sao cho 2xy-1 chia hết cho (x-1)(y-1)
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Tìm nghiệm nguyên x, y của pt: \(6x^2+10y^2+2xy-x-28y+18=0\)
tìm tất cả các số nguyên dương lẻ n sao cho +1 chia hết cho n
Tìm các số nguyên dương x,y thoả mãn \(x^3-y^3=133\left(x^2+y^2\right)\)
Các bạn giải hết cho mình với nhé, mình cảm ơn nhiều<3
Cho : x,y,z là các số dương thỏa mãn \(\sqrt{x+2}-x^3=\sqrt{x+2}-y^3\)
tìm GTNN của \(x^2+2xy-y^2+2y+2020\)