Chứng minh rằng a = 5n+2 +5n+1 +5n chia hết cho 31
1. Cho số nguyên x sao cho x chia cho 7 dư 2. Chứng tỏ rằng 2x+3 chia hết cho 7
2. Chứng minh rằng 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5n-1 chia hết cho 31
1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)
=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)
2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1
= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)
=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31
chứng minh rằng 2^0 + 2^1 + 2^2 + ...+2^5n-3 + 2^5n-2 +2^5n-1 chia hết cho 31 nếu n là só nguyên dương bất kì
Cho B = 1 + 2 + 22 + 23 + 24 + 25 + ... + 25n - 3 + 25n - 2 + 25n - 1
Chứng minh rằng B chia hết cho 31
chứng minh rằng: A=5n(5n+1)−6n(3n+2n)A=5n(5n+1)−6n(3n+2n) chia hết cho 91 với mọi số nguyên dương n
Chứng minh:
a) 20 + 21 + 22 + ... + 25n - 3 + 25n - 3 + 55n -1 chia hết cho 31
Đặt A = 20 + 21 + 22 + 23 + 24 + 25 + ..... +25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1
=> A = ( 20 + 21 + 22 + 23 + 24 + 25 ) + ..... + ( 25n-6 + 25n-5 + 25n-4 + 25n-3 + 25n-2 + 25n-1 )
=> A = 20 ( 1 + 21 + 22 + 23 + 24 ) + ..... + 25n-6 ( 1 + 21 + 22 + 23 + 24 )
=> A = 1.31 + 25 .31 + ..... + 25n-6.31
=> A = 31.( 1 + 25 + ..... + 25n-6 )
Vì 31 ⋮ 31 => A ⋮ 31 ( đpcm )
cứu em vs=<
chứng minh rằng b=(n^2-n) (n+1) b chia hết cho 6
c=5n^2+5n;c chia hết cho 10
\(b=\left(n^2-n\right)\left(n+1\right)\)
\(=\left(n\cdot n-n\cdot1\right)\left(n+1\right)\)
\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên \(\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮3!\)
=>b chia hết cho 6
\(c=5n^2+5n\)
\(=5n\cdot n+5n\cdot1\)
\(=5n\left(n+1\right)\)
n;n+1 là hai số nguyên liên tiếp
=>\(n\left(n+1\right)⋮2\)
=>\(c=5\cdot n\cdot\left(n+1\right)⋮5\cdot2=10\)
Chứng minh:
a) 20 + 21 + 22 + ... + 25n - 3 + 25n - 3 + 55n - 1 chia hết cho 31
b) Chứng minh tổng, hiệu sau chia hết cho 7:
22x - y
8x + 2y
11x + 10y
Chứng minh rằng 20 +21 +22 +...+25n-3 +25n-2 +25n-1 chia hết cho 31 nếu n là số nguyên dương bất kif
help me please
Đặt A=\(2^0+2^1+2^2+....+2^{5n-3}+2^{5n-2}+2^{5n-1}\)
\(\Leftrightarrow A=\left(2^0+2^1+2^2+2^3+2^4+2^5\right)+...+\left(2^{5n+2}+2^{5n+1}+2^{5n}+2^{5n-1}+2^{5n-2}+2^{5n-3}\right)\)
\(\Leftrightarrow A=2^0\left(1+2+2^2+2^3+2^4\right)+....+2^{5n+2}\left(1+2+2^2+2^3+2^4\right)\)
\(\Leftrightarrow A=2^0\cdot31+2^5\cdot31+....+2^{5n+2}\cdot31\)
\(\Leftrightarrow A=31\cdot\left(2^0+2^5+...+2^{5n+2}\right)\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
quynh oi dpcm la gi vay?
Là bạn muốn tớ thử đấy nhé!
Đặt S=1+2+22+...+25n-3+25n-2+25n-1
=(1+22+24+26+28)+(2+23+25+27+29)+...+(25n-7+25n-5+25n-3+25n-1)
=1(1+22+24+26+28)+2(1+22+24+26+28)+...+25n-7(1+22+24+26+28)
=1.31+2.31+...+25n-7.31 chia hết cho 31
Vậy ...
Chứng minh:
20+21+22+...+25n-3+25n-2+25n-1 chia hết cho 31
(nếu n là số nguyên bất kì)
\(\text{Đặt }A=\left(2^0+2^1+2^2+2^3+2^4\right)+...+\left(2^{5n-5}+2^{5n-4}+2^{5n-3}+2^{5n-2}+2^{5n-1}\right)\)
\(=\left(1+2 +4+8+16\right)+...+2^{5n-5}.\left(2^0+2^1+2^2+2^3+2^4\right)\)
\(=31+...+2^{5n-5}.31\)
\(=31.\left(1+...+2^{5n-5}\right)\text{chia hết cho 31}\left(đpcm\right)\)
chứng minh A = n^5 + 5n^4 + 5n^3 - 5n^2 - 6n chia hết cho 120
A = n ( n^4 + 5n^2 - 5n - 6 )
5n+5n.52=650
5n(1+52)=650
5n.26=650
=>5n=650:26
=>5n=25=52
=>n=2