Tính giá trị biểu thức
A=x^3+3x^2+3xvs x=1999
B=x^4-2017x^3+2017x^2-2017x+2018 tại x=2016
Giá trị của biểu thức A = x^2017 - 2017x^2016 + 2017x^2015 – 2017x^2014 + ... – 2017x^2 + 2017x – 2017 tại x = 2016
Lời giải:
Tại $x=2016$ thì $x-2016=0$
Khi đó:
$A=x^{2016}(x-2016)-x^{2015}(x-2016)+x^{2014}(x-2016)-x^{2013}(x-2016)+.....-x(x-2016)+x-2017$
$=x^{2016}.0-x^{2015}.0+......-x.0+2016-2017=2016-2017=-1$
Tính giá trị biểu thức :
a, N = \(x^6-2017x^5+2017x^4-2017x^3+2017x^2-2017x+2025\)
tại x = 2016
b, Q = \(2017x^{2016}+2016x^{2015}+2015x^{2014}+...+3x^2+2x+1\)
tại x = ( -1 )
a/ Với \(x=2016\Rightarrow2017=x+1\)
\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+2025\)
\(A=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2025\)
\(A=2025-x=9\)
b/ Với \(x=-1\Rightarrow\left\{{}\begin{matrix}x^{2k}=1\\x^{2k+1}=-1\end{matrix}\right.\) ta có:
\(Q=2017-2016+2015-2014+...+3-2+1\)
\(Q=1+1+1+...+1+1\) (có \(\frac{2016}{2}+1=1009\) số 1)
\(Q=1009\)
Tính giá trị của đa thức sau biết x=2018
N=x^6-2017x^5-2017x^4-2017x^3-2017x^2-2017x-2017
Help me :(((
Ta có : x - 1 = 2018 - 1 = 2017
N = x6 - 2017x5 - 2017x4 - 2017x3 - 2017x2 - 2017x - 2017
N = x6 - ( x - 1 ).x5 - ( x - 1 ).x4 - ( x - 1 ).x3 - ( x - 1 ).x2 - ( x - 1 ).x - ( x - 1 )
N = x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - x + 1
N = 1
Tính giá trị của đa thức
\(A=x^8-2017x^7+2017x^6-2017x^5+...+2017x^2-2017x+25\) tại x = 2016
Ta có:
\(A=x^8-2017x^7+2017x^6-2017x^5+...+2017x^2-2017x+25\)
\(=\left(x^8-2016x^7\right)+\left(-x^7+2016x^6\right)+...+\left(x^2-2016x\right)-x+25\)
\(=\left(x-2016\right)\left(x^7-x^6+...+x\right)-x+25\)
Thế x = 2016 vào A ta được
\(=\left(2016-2016\right)\left(2016^7-2016^6+...+2016\right)-2016+25=-2016+25=-1991\)
Ko biet lam quen cach lam rui hihihi ^,^
3. tính giá trị của biểu thức:
x10 - 2017x9 + 2017x8 - ... + 2017x2 - 2017x + 2017
khi x = 2016
Dễ thầy 2017=2016+1=x+1
Thay vào ta có:
\(x^{10}-2017x^9+2017x^8-.....+2017x^2-2017x+2017\)
\(=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-....+\left(x+1\right)x^2-\left(x+1\right)x+2017\)
\(=x^{10}-x^{10}-x^9+x^9+x^8-....+x^3+x^2-x^2-x+2017=-x+2017=-2016+2017=1\)
Vậy..........
thanks bn!!
456545756858768978087
cho đa thức f(x)=x^8 - 2017x^7 +2017x^6 - 2017x^5 +...+2017x^2 - 2017x + 2018.Tính f(2016)
f(2016)=20168 - 2017*20167 +2017*20166 - 2017*20165 +...+2017*20162 - 2017*2016+ 2018
=20168 -( 20168 + 2016) + (20167+2016) - (20166 + 2016)+....+20163+2016 -( 20162 + 2016)+2018
=2018
Thay x=2016 thì 2017=x+1 và 2018=x+2 Do đó
\(f\left(x\right)=x^8-\left(x+1\right)x^7+\left(x+1\right)x^6-...-\left(x+1\right)x\)\(+x+2\)
\(=x^8-x^8-x^7+x^7+x^6-...+x^2-x^2-x+x+2\)
\(=2\)
Tính giá trị của biểu thức\(M=x^{10}-2017x^9+2017x^8-......+2017x^2-2017x+2017\)
Khi x= 2016
Tính giá trị biểu thức A tại x = 2018:
A= \(x^{10}-2017x^9-2017x^8-....-2017x^2-2017x-1\)
x=2018 nên x-1=2017
\(A=x^{10}-x^9\left(x-1\right)-x^8\left(x-1\right)-...-x^2\left(x-1\right)-x\left(x-1\right)-1\)
\(=x^{10}-x^{10}+x^9-x^9+x^8-...-x^3+x^2-x^2+x-1\)
=x-1=2017
tính giá trị của biểu thức :
A = x^8 - 2017x^7 + 2017x^6 - 2017x^5 + .....- 2017x +2017 với x = 2016
GIÚP TỚ NHA
f(2016)=2016^8 - 2017*2016^7 +2017*2016^6 - 2017*2016^5 +...+2017*2016^2 - 2017*2016+ 2018
=2016^8 -( 2016^8 + 2016) + (2016^7+2016) - (2016^6 + 2016)+....+2016^3+2016 -( 2016^2 + 2016)+2018
=2018
mình đọc chả hiểu gì
có bạn nào giải chi tiết ra được không
A=x8-2016x7-x7+2016x6+x6-2015x5+....+2017x+x-2016+2018
=x7(x-2016)-x6(x-2016)+.....-x(x-2016)+(x-2016)+2018
Do x=2016\(\Leftrightarrow\)x-2016=0
A=2018