Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Linh
Xem chi tiết
Trịnh Ngọc Quỳnh Anh
20 tháng 7 2017 lúc 11:34

+A=2+22+23+...+2602+22+23+...+260

+A=(2+22)+(23+24)+...+(259+260)(2+22)+(23+24)+...+(259+260)

+A=2.(1+2)+23.(1+2)+..+259.(1+2)2.(1+2)+23.(1+2)+..+259.(1+2)

+A=2.3+23.3+..+259+32.3+23.3+..+259+3

=>A chia hết cho 3

Mấy câu sau thì nhóm 3,4 là Ok.

Mình nghĩ là làm như vậy, các bạn thấy thế nào?

Anh Bùi Hoàng
Xem chi tiết
Phạm Việt Nam
Xem chi tiết
nguyễn hải anh
Xem chi tiết
Nguyễn Phạm Châu Anh
21 tháng 3 2017 lúc 21:14

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(2S-S=1-\frac{1}{2^{20}}\)

\(S=1-\frac{1}{2^{20}}< 1\)-> ĐPCM.

Đặng Bình Giang
Xem chi tiết
Nhật Hạ
7 tháng 5 2019 lúc 20:22

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)

Biểu thức có 200 số hạng

Ta có: \(\frac{1}{101}>\frac{1}{300};\frac{1}{102}>\frac{1}{300};...;\frac{1}{299}>\frac{1}{300};\frac{1}{300}=\frac{1}{300}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}=\frac{200}{300}=\frac{2}{3}\)

Vậy....

Trần Nhật Dương
7 tháng 5 2019 lúc 20:29

Ta có : \(\frac{1}{101}>\frac{1}{300}\)

            \(\frac{1}{102}>\frac{1}{300}\)

              ..................

              \(\frac{1}{300}=\frac{1}{300}\)

Do đó \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}>\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\)

Hay     \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}>200\cdot\frac{1}{300}=\frac{2}{3}\Rightarrowđpcm\)

Phạm Thanh Bình
Xem chi tiết
joyboy god
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 10 2023 lúc 15:20

\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)

Toru
26 tháng 10 2023 lúc 15:32

\(3^{5n+2}+3^{5n+1}-3^{5n}(n\in N^*)\\=3^{5n}\cdot3^2+3^{5n}\cdot3-3^{5n}\\=3^{5n}\cdot(3^2+3-1)\\=3^{5n}\cdot11\)

Vì \(3^{5n}\cdot11\vdots11\) 

nên biểu thức \(3^{5n+2}+3^{5n+1}-3^{5n}\vdots11\)

Nguyễn Gia Hân
Xem chi tiết
Ga*#lax&y
20 tháng 12 2020 lúc 19:18

Ta có A=2+22+23+24+....+299

=>A=(2+22+23)+(24+25+26)+...+(297+298+299)

=>A=(2+22+23)+23(2+22+23)+....+296(2+22+23)

=>A=14+23.14+....+296.14

=>A=14(23+26+...+296) ⋮ 14

=>A⋮14

Đặng Thị Mai Lương
Xem chi tiết