PTĐTTNT: x8 + x + 1
PTĐTTNT
`x^12+x^2+1`
PTĐTTNT :
9-16(x-1)^2
= 32-4\(^2\)(x-1)\(^2\)
=[3-4(x-1)].[(3+4(x-1)]
=(3-4x+4)(3+4x-4)
=(7-4x)(4x-1)
PTĐTTNT
(x+1)(x+2)(x+3)(x+4) + 1
\(\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2\)
\(=\left(x^2+5x+5\right)^2\)
PTĐTTNT:
x2 - x + 1
biết, ptđttnt
x7 + x + 1
bn xem lại đề nhé!
mk nghĩ là \(x^8+x+1\) hoặc \(x^7+x^2+1\)
PTĐTTNT
x11 + x + 1
những bài thế này thường có nhân tử \(x^2+x+1\)bạn nhé
PTĐTTNT
(x+1)(x+2)(x+3)(x+4) - 24
(x + 1)(x + 2)(x + 3)(x + 4) - 24
= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 24
= (x2 + 4x + x +4)(x2 + 3x + 2x + 12) - 24
= (x2 + 5x + 4)(x2 + 5x + 12) - 24
Đặt t = x2 + 5x + 8
Ta có: x2 + 5x + 4 = x2 + 5x + 8 - 4 (1)
x2 + 5x + 12 = x2 + 5x + 8 + 4 (2)
Thay t = x2 + 5x + 8 vào (1) và (2), ta có:
⇒ (t - 4)(t + 4) - 24
= t2 - 16 - 24
= t2 - 40
= (t - \(\sqrt{40}\))(t + \(\sqrt{40}\))
= (x2 + 5x + 8 - \(\sqrt{40}\))(x2 + 5x + 8 + \(\sqrt{40}\))
PTĐTTNT: x5+x4+1
x5+x4+1 PTĐTTNT
\(x^5+x^4+1\)
\(=x^5-x^3-x^2-x^4+x^2+x+x^3-x-1\)
\(=x^2\left(x^2-x-1\right)-x\left(x^3-x-1\right)+\left(x^3-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
\(x^5+x^4+1=x^5+x^4+x^3-x^3+1=x^3\left(x^2+x+1\right)-\left(x^3-1\right)=x^3\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)=\left(x^3-x+1\right)\left(x^2+x+1\right)\)