Bài 1 Cho cặp số (x;Y) tm \(-1\le x+y\le1\)
\(-1\le x+y+xy\le1\)
CMR \(|x|\le2 \) \(| y|\le2\)
Bài 2 \(\)a,b,c \(\ge0\) và a+b+c \(\ge abc\)
CMR \(a^2+b^2+c^2 \ge abc\)
Bài tập: Tìm các cặp số x và y sao cho x - y = xy - 1
\(x-y=xy-1\)
\(\Rightarrow x-y-xy+1=0\)
\(\Rightarrow x\left(1-y\right)+\left(1-y\right)=0\)
\(\Rightarrow\left(x+1\right)\left(1-y\right)=0\)
+) Với $x=-1$ thì ta có mọi $y$ thỏa mãn
+) Với $y=1$ thì ta có mọi $x$ thỏa mãn.
Bài 1 : Tìm các cặp số nguyên x , y sao cho x = 6y và | x | - | y | = 60
Bài 2 : Tìm các cặp số nguyên a, b sao cho a khác b và | a | + | b | <2
Bài 3 : Cho dãy số 1 ; -2 ; 3 ; -4 ; 5 ; -6 ; 7 ; -8 ; 9 ; -10 . Chọn ra 3 số rồi đặt dấu cộng , dấu trừ giữi các số ấy . Tính ra giá trị nhỏ nhất và lớn nhất của số đó
Bài 1:
Thay \(x\) = 6y vào biểu thức ta có:
|6y| - |y| = 60
|5y| = 60
5.|y| = 60
|y| = 60 : 5
|y| = 12
\(\left[{}\begin{matrix}y=-12\\y=12\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-72\\x=72\end{matrix}\right.\)
Kết luận:
Các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-72; -12); (72; 12)
Bài 5(0.5 điểm)
a)Tim cặp số nguyên x, y sao cho xy +y – 3x = 8
b) Tìm số nguyên x sao cho 6n +5 chia hết cho n -1
\(a,\Leftrightarrow y\left(x+1\right)-3\left(x+1\right)=5\\ \Leftrightarrow\left(x+1\right)\left(y-3\right)=5=5.1=\left(-5\right)\left(-1\right)\\ TH_1:\left\{{}\begin{matrix}x+1=1\\y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=8\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}x+1=5\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\\ TH_3:\left\{{}\begin{matrix}x+1=-5\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\\ TH_4:\left\{{}\begin{matrix}x+1=-1\\y-3=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(0;8\right);\left(4;4\right);\left(-6;2\right);\left(-2;-2\right)\right\}\)
\(b,\Leftrightarrow6\left(n-1\right)+11⋮n-1\\ \Leftrightarrow n-1\in\left\{-11;-1;1;11\right\}\\ \Leftrightarrow n\in\left\{-10;0;2;12\right\}\)
Bài 9. Tìm các cặp số nguyên x và y sao cho x – y = xy – 1.
x-y=xy-1
<=> x-y-xy+1=0
<=> x(1-y) + (1-y)=0
<=> (x+1)(y-1)=0
x=-1 hoặc y=1
Vậy (x,y) = (-1, y thuộc Z )
hoặc (x,y)=( x thuộc Z , y=1)
Chúc bạn học tốt .
bài 1:tìm số nguyên n sao cho:
a)n+3 chia hết cho n-1
b) 4n+3 chia hết cho 2n+1
bài 2:tìm cặp số a,b thuộc Z sao cho:
a) a.b=13
b) a.b=-10
bài 3:tìm các số nguyên x,y sao cho:
(2.x-1).(y+4)=11
bài 1:
a)<=>(n-1)+4 chia hết n-1
=>4 chia hết n-1
=>n-1\(\in\){-1,-2,-4;1,2,4}
=>n\(\in\){0,-1,-3,2,3,5}
b)<=>2(2n+1)+2 chia hết 2n+1
=>4 chia hết 2n+1
=>2n+1\(\in\){-1,-2,-4,1,2,4}
=>n\(\in\){-1;-3;-7;3;5;9}
bài 3 : <=>2y+8+xy+4x-1y-4=11
=>(8-4)+(2y-1y)+xy+4x=11
=>4+1y+x.y+x.4=11
=>1y+x.(x+y)=11-4
=>y+x.x+y=8
=>(x+y)^2=8
=>x+y=3
=>x và y là các số có tổng =3 ( bn tự liệt kê nhé )
bài 6:
a) Tìm cặp số x,y nguyên biết: (x - 3).(y+1)=5
b) Cho A = 21 + 5 + 52 + 53 + ... + 599.Tìm số dư của phép chia khi lấy A chia cho 6
Lời giải:
a. $(x-3)(y+1)=5=1.5=5.1=(-1)(-5)=(-5)(-1)$
Vì $x-3, y+1$ cũng là số nguyên nên ta có bảng sau:
b.
$A=21+5+(5^2+5^3)+(5^4+5^5)+....+(5^{98}+5^{99})$
$=26+5^2(1+5)+5^4(1+5)+....+5^{98}(1+5)$
$=2+24+(1+5)(5^2+5^4+...+5^{98}$
$=2+24+6(5^2+5^4+....+5^{98})=2+6(4+5^2+5^4+...+5^{98})$
$\Rightarrow A$ chia $6$ dư $2$.
BÀi 1:Tìm các cặp số nguyên x,y biết 2x2+y2+xy=2(x+y)
Bài 2:Tìm các cặp số nguyên dương x,y biết x2+y2=3(x+y)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
bài 1:tìm cặp số tự nhiên x,y biết:
1) (x+5)(y-3) = 15
2) xy+2x +3y = 0
3) xy - 2x + y = 9
bài 2:cho A = 2 + 22 + 23 + ...... + 260. chứng tỏ rằng: A chia hết cho 3, 5, 7
mik cần gấp ;-;
h mik ko gấp nữa, nhưng nếu cậu biết cách giải thì chỉ mik nha ạ, làm tư liệu sau này mik học ý ạ :>
Bài 1: Tìm số cặp x,y biết: x+y=n (x,y,n\(\in\)N)
Bài 2:Tìm số cặp x,y,z biết x+y+z=m(x,y,z,m\(\in\)N* )
số cặp x,y là :
N :2 = ??
đ/s:.......
số cặp x,y,z là :
N* :3=?
bài 1: cho x, y thỏa mãn \(\frac{3x-y}{x+1}=\frac{1}{2}\)giá trị của tỉ số \(\frac{x}{y}bằng\)
(kết quả là phân số tối giản)
Bài 2:Giá trị của x thỏa mãn:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
Bài 3: Số cặp số nguyên(x,y) thỏa mãn
x+y+xy=3
Bài 4: Số cặp số nguyên dương a,b thỏa mãn\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Mình chỉ cần kết quả thui
TRẢ LỜI ĐÚNG LIKE CHO
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm