1,tìm UC của a
a, n+3 và n+1
b,3n+2 và 2n+3
2,Tìm số tự nhiên a và b biết
3 mũ a bằng 183
cho a= n^3+2n; b=n^4+3n^2+1, n là số tự nhiên, tìm UCLN của a và b
CMR: 3n+11 và 3n+2 là 2 số nguyên tố cùng nhau với mọi số tự nhiên n. Tìm số tự nhiên n biết:
a, n+15 ≤ n-6
b, 2n+15 ⋮ 2n+3
c, 6n+9 ⋮ 2n+1
1. Chứng tỏ rằng với mọi số tự nhiên n, các số sau đây là hai số nguyên tố cùng nhau:
a) n+2 và n+3
b) 2n+3 và 3n+5.
2. Tìm số tự nhiên a,b biết ƯCLN (a;b)=4 và a+b=48.
3. Tìm giá trị lớn nhất của biểu thức: C=-(x-5)^2+10.
Với n là số tự nhiên. Tìm ƯCLN của các số sau: a) 3n+1 và 3n+10 b) 2n+1 và n+3
Lời giải:
a. Gọi d là ƯCLN của $3n+1, 3n+10$
\(\Rightarrow \left\{\begin{matrix} 3n+1\vdots d\\ 3n+10\vdots d\end{matrix}\right.\Rightarrow (3n+10)-(3n+1)\vdots d\)
\(\Rightarrow 9\vdots d\)
\(\Rightarrow d=\left\{1;3;9\right\}\)
Mà $3n+1\vdots d$ nên $d$ không thể là $3,9$
$\Rightarrow d=1$
Vậy ƯCLN $(3n+1,3n+10)=1$
b.
Gọi $d$ là ƯCLN $(2n+1,n+3)$
\(\Rightarrow \left\{\begin{matrix} 2n+1\vdots d\\ n+3\vdots d\end{matrix}\right.\left\{\begin{matrix} 2n+1\vdots d\\ 2n+6\vdots d\end{matrix}\right.\)
\(\Rightarrow (2n+6)-(2n+1)\vdots d\Rightarrow 5\vdots d\)
\(\Rightarrow d\in\left\{1;5\right\}\)
Bài 1: Tìm số tự nhiên n để:
a) (3n + 1) ⋮ (n - 1) b) (n - 3) ⋮ (2n - 1)
Bài 2:
a) Tìm số tự nhiên có hai chữ số giống nhau, biết rằng số đó chia hết cho 2 và còn chia cho 5 thì dư 2.
b) Tìm số có ba chữ số giống nhau, biết rằng số đó chia hết cho 5, còn chia 2 thì dư 1.
c) Tìm số có hai chữ số giống nhau, biết rằng số đó chia hết cho 3 và chia cho 5 thì dư 1.
d) Tìm tập hợp các số tự nhiên vừ chia hết cho 2, vừa chia hết cho 5 và 132 < x < 178.
Bài 3: Tìm các số tự nhiên x,y biết:
a) \(\overline{23x5y}\) chia hết cho 2, 5 và 9
b)\(\overline{2x3y}\) chia hết cho 2, 5 và chia cho 9 dư 1
c) \(\overline{2x3}\) + \(\overline{3y5}\) chia hết cho 9 và x - y = 3
d) \(\overline{x378y}\) chia hết cho 72
Bài 4: Tìm tất cả các số tự nhiên n sao cho:
a) (n + 7) ⋮ (n + 1) b) (3n + 19) ⋮ (3n - 2) c) (4n +29) ⋮ (2n + 1)
2/
a/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}⋮2\) => b chẵn
\(\overline{bb}:5\) dư 2 => b={2;7}
Do b chẵn => b=2
Số cần tìm \(\overline{bb}=22\)
b/
Gọi số cần tìm là \(\overline{bbb}\)
Theo đề bài \(\overline{bb}:2\) dư 1 => b lẻ
\(\overline{bbb}⋮5\) => b={0;5}
Do b lẻ => b=5
Số cần tìm \(\overline{bbb}=555\)
c/
Gọi số cần tìm là \(\overline{bb}\)
Theo đề bài \(\overline{bb}:5\) dư 1 => b={1;6}
\(\overline{bb}⋮3\Rightarrow b+b=2b⋮3\Rightarrow b⋮3\)
=> b=6
Số cần tìm là \(\overline{bb}=66\)
1/
a/
\(\dfrac{3n+1}{n-1}=\dfrac{3\left(n-1\right)+4}{n-1}=3+\dfrac{4}{n-1}\)
\(\left(3n+1\right)⋮\left(n-1\right)\) khi \(4⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)=\left\{-4;-2;-1;1;2;4\right\}\Rightarrow n=\left\{-3;-1;0;2;3;5\right\}\)
b/
\(\left(n-3\right)⋮\left(2n-1\right)\Rightarrow2\left(n-3\right)⋮\left(2n-1\right)\)
\(\dfrac{2\left(n-3\right)}{2n-1}=\dfrac{2n-6}{2n-1}=\dfrac{\left(2n-1\right)-5}{2n-1}=1-\dfrac{5}{2n-1}\)
\(2\left(n-3\right)⋮\left(2n-1\right)\) khi \(5⋮\left(2n-1\right)\Rightarrow\left(2n-1\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n=\left\{-2;0;1;3\right\}\)
bài 1 tìm chữ số tận cùng của lũy thừa
a)7 mũ 2005
b)12 mũ 1789
c)18 mũ 205 + 99 mũ 199
d) 2005 mũ n + 37.4 mũ 2015
bài 2 chứng minh rằng
9 mũ 2n-1 chia hết cho 2 và 5
bài 6 tìm số tụ nhiên n
a)2n+7 chia hết cho n+1
b) 2n+1 chia hết cho 6-n
c)3n chia hết cho 5-2n
bài 3 tìm hai số biết
a)tổng hai số bằng 788 và số lớn chia số nhỏ được thương là 11 dư 32
b) hiệu hai số là 13748 và số lớn chia số nhỏ được thương là 3 dư 2180
a, Tìm số tự nhiên n biết : 3n+2 chia hết cho n-1
b, Tìm hai số tự nhiên a và b biết: a x b = 891 và ƯCLN(a;b) =3
Ta có : 3x + 2 chia hết cho n - 1
=> 3x - 3 + 5 chia hết cho n - 1
=> 3(n - 1) + 5 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) = {1;5}
=> n = {2;6}
a) 3n+2 \(⋮\) n-1 <=> 3(n-1)+5 \(⋮\) n-1
=> 5 \(⋮\) n-1 (vì 3(n-1) \(⋮\) n-1)
=> n-1 ∈ Ư(5) = {1; 5}
n-1 = 1 => n = 2
n-1 = 5 => n = 6
Vậy n ∈ {2; 6}
b)
Vì \(ƯCLN\left(a,b\right)=3\Rightarrow\hept{\begin{cases}a=3.m\\b=3.n\end{cases};\left(m,n\right)=1;m,n\in N}\)
Thay a = 3.m, b = 3.n vào a.b = 891, ta có:
3.m.3.n = 891
=> (3.3).(m.n) = 891
=> 9.(m.n) = 891
=> m.n = 891 : 9
=> m.n = 99
Vì m và n nguyên tố cùng nhau
=> Ta có bảng giá trị:
m | 1 | 99 | 9 | 11 |
n | 99 | 1 | 11 | 9 |
a | 3 | 297 | 27 | 33 |
b | 297 | 3 | 33 | 27 |
Vậy các cặp (a,b) cần tìm là:
(3; 297); (297; 3); (27; 33); (33; 27).
Chứng minh rằng các phân số sau tối giản với n tự nhiên:
3n+2/5n+3
Chứng minh rằng các phân số sau có giá trị tự nhiên:
a) 10 mũ 2002 +2 /3
b) 10 mũ 2003 +8 /9
Chứng minh rằng
a) 1717/2929=17171717/29292929
b) 3210-34/4170-41 = 6420-68 / 8340-82
Tìm số tự nhiên n để các phân số sau tối giản
a) 2n+3 / 4n+1
b) 3n+2 /7n+1
Tìm số tự nhiên n để n+3 / 2n-2 ; n+19 / n+6 có giá trị tự nhiên
1) Tìm số nguyên a,b biết: a^3+b^3=1216 và phân số a/b rút gọn được thành 3/5
2) Viết các phân số tối giản a/b với a,b là các số nguyên dương với a*b=100
3) Tìm các số tự nhiên a,b biết rằng a/b=132/143 và BCNN a,b=1092
4) Chứng tỏ các phhaan số sau đều là tối giản:
a) 2n+1/4n+8 ( n khác -2) ; b) 3n+2/5n+3 ( mọi n thuộc số nguyên ) ; c) n+1/2n