Cho a.b.c=2015
Tính A=2015/ab+a+2015+b/bc+b+2015+2015/abc+bc+c
Cho a.b.c=2015.Tinh A= \(\frac{2015}{ab+a+2015}+\frac{2015}{bc+b+2015}+\frac{2015}{ca+c+2015}\)
M=\(\frac{2015\cdot a}{ab+2015\cdot a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\) biet abc=2015.Tinh M
Ta có
\(M=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(=\frac{abc.a}{ab+abc.a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}=1\)
ôi câu hỏi hay có khác j câu này Câu hỏi của Lê Phương Thảo - Toán lớp 8 - Học toán với OnlineMath
\(M=\frac{2015.a}{ab+2015.a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{a^2.b.c}{ab\left(1+ac+c\right)}+\frac{b}{b\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(\Rightarrow M=\frac{ac+1+c}{ac+c+1}\)
\(\Rightarrow M=1\)
Vậy M = 1
Cho a,b,c khác 0 thỏa mãn abc=2015 Chứng minh 2015a/ab+2015a+2015+(b/bc+b+2015+c/ac+c+1=1
Cho abc =15
Tinh M = 2015.a / ab + 2015.a + 2015 + b / bc + b + 2015 + c / ac + c +1
https://olm.vn/hoi-dap/question/764972.html
cho abc = 2015 , tính A=\(\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
Ta có:
\(A=\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{abca}{ab+abca+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{a^2bc}{ab.\left(1+ac+c\right)}+\frac{b}{b.\left(c+1+ac\right)}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\)
\(\Rightarrow A=\frac{ac}{ac+1+c}+\frac{1}{ac+1+c}+\frac{c}{ac+1+c}\)
\(\Rightarrow A=\frac{ac+1+c}{ac+1+c}\)
\(\Rightarrow A=1.\)
Vậy \(A=1.\)
Chúc bạn học tốt!
Thay $abc=2015$ vào $A$ ta có:
\(\begin{array}{l} A = \dfrac{{{a^2}bc}}{{ab + {a^2}bc + abc}} + \dfrac{b}{{bc + b + abc}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{{a^2}bc}}{{ab\left( {1 + ac + c} \right)}} + \dfrac{b}{{b\left( {c + 1 + ac} \right)}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac}}{{ac + c + 1}} + \dfrac{1}{{ac + c + 1}} + \dfrac{c}{{ac + c + 1}}\\ A = \dfrac{{ac + c + 1}}{{ac + c + 1}} = 1 \end{array}\)
tinh: 2915a/(ab+2015a+2015) + b/( bc+2015+b) +c/(ac+c+1)
biết (abc-2015)^10 +(a^2b^2c^2-2015^2)^10=0^1980
Cho a+b+c=1
Tính M =(2015/ab+a+1)+(2015/bc+b+1)+(2015/ac+c+1)
cho a+b+c=6 và ab+bc+ca=12.Tính giá trị M=(a-b)2015+(b-c)2015+(c-a)2015
cho abc=2015
tính M=\(\frac{2015a}{ab+2015a+2015}+\frac{b}{bc+b+2015}+\frac{c}{ac+c+1}\)