Cho a.b.c=2015.Tinh A= \(\frac{2015}{ab+a+2015}+\frac{2015}{bc+b+2015}+\frac{2015}{ca+c+2015}\)
tinh: 2915a/(ab+2015a+2015) + b/( bc+2015+b) +c/(ac+c+1)
biết (abc-2015)^10 +(a^2b^2c^2-2015^2)^10=0^1980
Cho 3 số dương a,b,c
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}\)
\(Tính:A=\frac{21ab^{2015}+12bc^{2015}+15ca^{2015}}{a^{2016}+b^{2016}+c^{2016}}\)
\(chứng_{ }minh_{ }\frac{a}{b}=\frac{c}{d}_{ }biết_{ }\frac{a^{2015}+b^{2015}}{a^{2015}-b^{2015}}=\frac{c^{2015}+d^{2015}}{c^{2015}-d^{2015}}\)
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh::\(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)với \(b,d\ne0,c\ne d\)
Cho a,b,c là số dương . Chứng minh:s^2016+b^2016+c^2016>(b+c×a^2015)/2+(c+a×b^2015)/2+(a+b×a^2015)/2
cho các số nguyên dương a; b; c thỏa mãn: a^3+b^3=c^3. so sánh a^2015+b^2015 với c^2015
Chứng minh rằng :Nếu a/b=c/d thì \(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}+b^{2015}}{c^{2015}+d^{2015}}\)
Cho a,b,c la cac so duong .Chung minh rang:
a^2016+b^2016+c^2016 >hoac=(b+c).a^2015/2+(c+a).b^2015/2+(a+b).c^2015/2