(4^17 + 4^3) : (4^16 + 4^2 )
[( 5^16+4^16) . 3^17 3^10 ] .(2^4- 4^2)
[(516+416).317.310)].(24-42)
=[(516+416).317.310)].(16-16)
=[(516+416).317.310)].0
=0
Giải :
[( 516 + 416 ) . 317. 310 )] . ( 24- 42 )
= [( 516 + 416 ) . 317. 310 )] . [ 24 - ( 22 )2]
= [( 516 + 416 ) . 317. 310 )] . [ 24 - 24)
= [( 516 + 416 ) . 317. 310 )].0
= 0
Tính theo mẫu:
Mẫu: 4 × 12 + 4 ×16 – 4 8 = 4× (12 + 16 – 8) = 4 × 20 = 80
3 ×17 + 3 × 25 - 3 × 2
3 ×17 + 3 × 25 - 3 × 2 = 3 × (17 + 25 – 2) = 3 × 40 = 120
Bài 13: Dấu <, =, >
10 … 10 + 3
11 + 2…. 2 + 11
9 … 10 + 9
10 … 10 + 0
17 – 4 … 14 - 3
18 – 4 … 12
15 … 15 – 1
17 + 1… 17 + 2
12+ 5 … 16
16 … 19 - 3
15 – 4 … 10 + 1
19 – 3 … 11
10 < 10 + 3
11 + 2=2 + 11
9 < 10 + 9
10 = 10 + 0
17 – 4 > 14 - 3
18 – 4 >12
15 > 15 – 1
17 + 1<17 + 2
12+ 5 > 16
16 =19 - 3
15 – 4 =10 + 1
19 – 3 >11
Cho B=4+4^2+4^3+4^4+......+4^16+4^17
tìm số dư khi chia B cho 17
B=(4+4^2+4^3)+....+(4^15+4^16+4^17)
=4.(4^0+4^1+4^2)+....+4^15.(4^0+4^1+4^2)
=4.(1+4+16)+....+4^15.(1+4+16)
=4.21+...+4^15.21
21.(4+...+4^15) chia hết cho 17
Do B : 17
=> B : 17 dư 0.
sao 21.(4+...+4^15) lại chia hết cho 17
bạn giải thik kĩ đc ko
Cho B=4+4^2+4^3+4^4+...+4^16+4^17
Tìm số dư khi chia B cho 17
B=(4+4^2+4^3)+....+(4^15+4^16+4^17)
=4.(4^0+4^1+4^2)+....+4^15.(4^0+4^1+4^2)
=4.(1+4+16)+....+4^15.(1+4+16)
=4.21+...+4^15.21
21.(4+...+4^15) chia hết cho 17
vậy B chia hết cho 17
(5^16+16^5)(3^17-3^10)(2^4-4^2)
(\(5^{16}\)+\(16^5\))(\(3^{17}\) -\(3^{10}\))(\(2^4\) -\(4^2\) )
=(\(5^{16}\) +\(16^5\))(\(3^{17}\) -\(3^{10}\))(16-16)
=(\(5^{16}\)+\(16^5\) )(\(3^{17}\) - \(3^{10}\)) .0
=0
Cho B=4+4^2+4^3+4^4+.......+4^16+4^17
Tìm số dư khi chia B cho 17
Xét \(B=4+4^2+4^3+...+4^{17}\)
\(B=4+\left(4^2+4^3+4^4+4^5\right)+\left(4^6+4^7+4^8+4^9\right)+...+\left(4^{14}+4^{15}+4^{16}+4^{17}\right)\)
\(B=4+4^2\left(1+4+4^2+4^3\right)+4^6\left(1+4+4^2+4^3\right)+...+4^{14}\left(1+4+4^2+4^3\right)\)
\(B=4+4^2\cdot85+4^6\cdot85+...+4^{14}\cdot85\)
\(B=4+85\left(4^2+4^6+...+4^{14}\right)\)
\(B=4+17\cdot5\left(4^2+4^6+...+4^{14}\right)\)
Mà \(17\cdot5\left(4^2+4^6+...+4^{14}\right)⋮17\)
\(\Rightarrow4+17\cdot5\left(4^2+4^6+...+4^{14}\right)\)chia 17 dư 4
Hay \(B\)chia 17 dư 4 (ĐPCM)
\(B=4+4^2+4^3+4^4+........+4^{17}\)
\(B=4+\left(4^2+4^4\right)+\left(4^3+4^5\right)+...+\left(4^{15}+4^{17}\right)\)
\(B=4+4^2\left(1+4^2\right)+.....+4^{15}\left(1+4^2\right)\)
\(B=4+4^2.17+....+4^{15}.17\)
\(B=4+17.\left(4^2+4^3+...+4^{15}\right)\)
\(\Rightarrow\)\(17.\left(4^2+4^3+...+4^{15}\right)\)\(⋮17\)
\(\Rightarrow B:17\)\(dư\)\(4\)
\(\text{Vậy B chia 17 dư 4}\)
a) (4^17+4^3) : (4^16+4^2)
b) (2^7. 3^4.2^9.3^5) : ( 2^6.3^3.13)
c) 24^3:3^4 - 32^12:16^12
1) -145.(13 - 57) + 57.(10 -145)
2) 17.(15 - 16) + 16.( 17- 20)
3) -38.(25 - 4) + 25.(-4 + 38 )
4) 23.(145 - 17) - 145.(23 - 6)
5) 24.(15 - 4) + 4.(24 - 15)
6) 199.(15 - 17) - 199.(-17 + 5)
7) -39.(5 - 99) + 99.(10 - 39)
1: \(=-145\cdot13+145\cdot57+57\cdot10-57\cdot145=-1315\)
2: \(=17\cdot15-17\cdot16+16\cdot17-16\cdot20=255-320=-65\)
3: \(=-38\cdot25+38\cdot4-25\cdot4+25\cdot38=13\cdot4=52\)
4: \(=23\cdot145-23\cdot17-145\cdot23+145\cdot6=479\)
5: \(=24\cdot15-24\cdot4+4\cdot24-4\cdot15=360-60=300\)
6: \(=199\left(15-17+17-5\right)=199\cdot10=1990\)
7: \(=-39\cdot5+39\cdot99+99\cdot10-99\cdot39=795\)
1: =−145⋅13+145⋅57+57⋅10−57⋅145=−1315=−145⋅13+145⋅57+57⋅10−57⋅145=−1315
2: =17⋅15−17⋅16+16⋅17−16⋅20=255−320=−65=17⋅15−17⋅16+16⋅17−16⋅20=255−320=−65
3: =−38⋅25+38⋅4−25⋅4+25⋅38=13⋅4=52=−38⋅25+38⋅4−25⋅4+25⋅38=13⋅4=52
4: =23⋅145−23⋅17−145⋅23+145⋅6=479=23⋅145−23⋅17−145⋅23+145⋅6=479
5: =24⋅15−24⋅4+4⋅24−4⋅15=360−60=300=24⋅15−24⋅4+4⋅24−4⋅15=360−60=300
6: =199(15−17+17−5)=199⋅10=1990=199(15−17+17−5)=199⋅10=1990
7: =−39⋅5+39⋅99+99⋅10−99⋅39=795