Cho tam giác ABC đều. Trên tia đối của tia AB lấy điểm M,trên tia đối của tia AC lấy điểm N sao cho AN=AM. Chứng minh rằng: Tam giác PQR đều.
-Help me
cho tam đều ABC. Trên tia đối của tia AB, AC lần lượt lấy các điểm M, N sao cho AM=AN. Gọi P, Q ,R lần lượt là trung điểm của AB, AN, MC. Chứng minh rằng PQR là tam giác đều
cho tam giác ABC có B + C = 60độ . Phân giác AD. Trên AD lấy điểm O. Trên tia đối của tia AC lấy điểm M sao cho ABM = ABO. Trên tia đối của tia AB lấy 1 điểm N sao cho ACN = ACO . Chứng minh rằng : a) AM = AN ; b) tam giác MON là tam giác đều
Ta dễ dàng tính được ngay MABˆMAB^=BAOˆBAO^(dựa vào tia phân giác của góc BAC và góc ngoài của góc đó)
Xét tam giác ABM và tam giác ABO có:
BA là cạnh chung
MABˆMAB^=BAOˆBAO^
MBAˆMBA^=ABOˆABO^(gt)
=>tam giác ABM=tam giác ABO(g.c.g)
=>AM=AO.
Ta cũng dễ dàng tính được OACˆOAC^=CANˆCAN^(dựa vào tia phân giác của góc BAC và góc ngoài của góc đó)
Xét tam giác COA và tam giác CNA có:
AC là cạnh chung
OACˆOAC^=CANˆCAN^(c/m trên)
OACˆOAC^=ACNˆACN^(gt)
=>Tam giác COA=tam giác CNA(g.c.g)
=>AO=AN
Từ trên =>AN=AM
b)Ta Sẽ tính từ các kết luận trên được BN là trung trực của MO=>MN=NO
Tương tự trên cũng c/m được MC là trung trực của ON=>MO=MN
=>MN=MO=NO
=>Tam giác MON là tam giác đều.
a) Xét tam giác ABC có \(\widehat{B}+\widehat{C}=60^o\)nên \(\widehat{A}=120^o\)
Do AD là tia phân giác nên \(\widehat{A}_1=\widehat{A_2}=\widehat{A}_3=\widehat{A}_4=60^o\)
tam giác ABM = tam giác ABO ( g.c.g )
suy ra AM = AO
tam giác ACN = tam giác ACO ( g.c.g )
suy ra AN = AO
suy ra AM = AN
b) tam giác AOM = tam giác AON ( c.g.c ) \(\Rightarrow\)OM = ON ( 1 )
tam giác AOM = tam giác ANM ( c.g.c ) \(\Rightarrow\)OM = MN ( 2 )
Từ ( 1 ) và ( 2 ) suy ra : OM = ON = MN
do đó tam giác MON đều
Ta dễ dàng tính được ngay MABˆMAB^=BAOˆBAO^(dựa vào tia phân giác của góc BAC và góc ngoài của góc đó)
Xét tam giác ABM và tam giác ABO có:
BA là cạnh chung
MABˆMAB^=BAOˆBAO^
MBAˆMBA^=ABOˆABO^(gt)
=>tam giác ABM=tam giác ABO(g.c.g)
=>AM=AO.
Ta cũng dễ dàng tính được OACˆOAC^=CANˆCAN^(dựa vào tia phân giác của góc BAC và góc ngoài của góc đó)
Xét tam giác COA và tam giác CNA có:
AC là cạnh chung
OACˆOAC^=CANˆCAN^(c/m trên)
OACˆOAC^=ACNˆACN^(gt)
=>Tam giác COA=tam giác CNA(g.c.g)
=>AO=AN
Từ trên =>AN=AM
b)Ta Sẽ tính từ các kết luận trên được BN là trung trực của MO=>MN=NO
Tương tự trên cũng c/m được MC là trung trực của ON=>MO=MN
=>MN=MO=NO
=>Tam giác MON là tam giác đều.
1. Cho tam giác ABC là tam giác đều. Trên tia đối của tia AB lấy điểm M sao cho AM = AB. Trên tia đối của tia CA lấy điểm P sao cho CP = CA. Trên tia đối của tia BC lấy điểm N sao cho BN = BC. a) Chứng minh rằng: ∆𝑁𝐵𝑀 = ∆𝑀𝐴𝑃 b) Chứng minh rằng: ∆𝑀𝑁𝑃 là tam giác đều
cho tam giác nhọn abc có ac>ab và có góc b bằng 60 độ. Trên tia đối của tia ab lấy điểm m sao cho am bằng ab, trên tia đối của tia ac lấy điểm n sao cho an bằng ac. a/ chứng minh tam giác abc bằng tam giác amn . b/ từ n kẻ nk vuông góc với am tại k . Trên tia đối của tia km lấy điểm 3 h sao cho hk bằng km. chứng minh mnh là tam giác đều.
giúp em nhanh với ạ, cảm ơn !!!
cho tam giác abc trên tia đối của tia ab lấy điểm m sao cho am=ab trên tia đối tia ac lấy điểm n sao cho an=ac chứng minh tam giác abc=amn mn song song bc
Cho tam giác ABC đều. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CB lấy điểm E, trên tia đối của tia AC lấy điểm F sao cho BD=CE=AF
a. Chứng minh tam giác DEF đều
b. Gọi P,Q,R lần lượt là giao điểm của các đường thẳng AE, DC,BF và EA,CD,FB. Chứng minh tam giác PQR là tam giác đều
Cho tam giác ABC có B + C = 60 độ, tia phân giác của BAC cắt BC tại D. Trên AD lấy điểm O, trên tia đối của tia AC lấy điểm M sao cho ABM = ABO . Trên tia đối của tia AB lấy điểm N sao cho ACN = ACO . Chứng minh rằng AM = AN.
Cho tam giác ABC. Trên tia đối của AC lấy D sao cho AD= AC. Trên tia đối của tia AB lấy E sao cho AE= AB. Nối D với E
a) Chứng minh tam giác ABC= tam giác ADE
b) Gọi M là trung điểm của BC, N là trung điểm của DE. Chứng minh AM=AN
a: Xét ΔABC và ΔAED có
AB=AE
\(\widehat{BAC}=\widehat{EAD}\)
AC=AD
Do đó: ΔABC=ΔAED