Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Phương Linh
Xem chi tiết
Nguyễn Tiến Đạt
Xem chi tiết
trần thị mỹ tâm
5 tháng 3 2018 lúc 20:04

+ ta có 
5n^3 - 9n^2 + 15n - 27 = (5n - 9)(n^2 + 3) 
- với n = 0 ta có 5n^3 - 9n^2 + 15n - 27 = -27 loại 
- với n = 1 ta có 5n^3 - 9n^2 + 15n - 27 = -16 loại 
- với n = 2 ta có 5n^3 - 9n^2 + 15n - 27 = 7 nhận 
- với n > 2 ta có 5n - 9 > 1 và n^2 + 3 > 7 => không thể là số nguyên tố

Huỳnh Khánh Ly
Xem chi tiết
Võ Đông Anh Tuấn
3 tháng 7 2016 lúc 9:49

+ ta có 
5n^3 - 9n^2 + 15n - 27 = (5n - 9)(n^2 + 3) 
- với n = 0 ta có 5n^3 - 9n^2 + 15n - 27 = -27 loại 
- với n = 1 ta có 5n^3 - 9n^2 + 15n - 27 = -16 loại 
- với n = 2 ta có 5n^3 - 9n^2 + 15n - 27 = 7 nhận 
- với n > 2 ta có 5n - 9 > 1 và n^2 + 3 > 7 => không thể là số nguyên tố

Ngô Tấn Đạt
3 tháng 7 2016 lúc 9:53

t em nha 

Công Chúa Yêu Văn
Xem chi tiết
Nguyễn Thu Huyền
Xem chi tiết
Đức Đoàn Việt
27 tháng 9 2018 lúc 21:37

ta có: gọi A là đa thức trên

A=\(5n^3-9n^2+15n-27\)

=\(n^2\left(5n-9\right)+3\left(5n-9\right)\)

=\(\left(5n-9\right)\left(n^2+3\right)\)

vì: \(n^2+2>0\Rightarrow n^2+3>1\)

\(\Rightarrow\)\(n^2+3\) không thể bằng 1 \(\forall n\in N\)

\(\Rightarrow5n-9=1\Rightarrow n=2\left(n\in N\right)\)

Vậy n=2 thì A là số nguyên tố (A=7)

Nguyễn Hoàng Phương Uyên
Xem chi tiết
Hoàng Thảo Anh Trần
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 8 2021 lúc 18:16

Đặt \(N=12n^2-5n-25=\left(3n-5\right)\left(4n+5\right)\)

Do n tự nhiên nên \(\left(4n+5\right)-\left(3n-5\right)=n+10>0\Rightarrow4n+5>3n-5\)

N luôn có ít nhất 2 ước số phân biệt là \(3n-5\) và \(4n+5\)

\(\Rightarrow\) N nguyên tố khi và chỉ khi: \(\left\{{}\begin{matrix}3n-5=1\\4n+5\text{ là số nguyên tố}\end{matrix}\right.\)

\(3n-5=1\Rightarrow n=2\)

Khi đó \(4n+5=13\) là số nguyên tố (thỏa mãn)

Vậy \(n=2\)

quynh le
Xem chi tiết
Jack Yasuo
Xem chi tiết