Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Huyền Diệp
Xem chi tiết
ManDoo Ami 태국
Xem chi tiết
Nguyễn Trần Thành Đạt
26 tháng 7 2021 lúc 16:32

1B

2C

Em vẽ tập trục số ra rồi điền các giá trị vào gióng tương ứng nha!

Mấy bài này đang ở mức cơ bản thôi đó!

Cố lên nào!!!!!!

Nguyễn Lê Phước Thịnh
26 tháng 7 2021 lúc 22:46

Câu 1: B

Câu 2: C

Bao Truong
Xem chi tiết
Nguyễn Trọng Chiến
9 tháng 2 2021 lúc 18:03

Ta có \(a-b=5\Rightarrow\left(a-b\right)^2=25\Rightarrow a^2+b^2=25+2ab=25+2\cdot2=29\) (Do ab=2) 

\(B=3\left[\left(a^2+b^2\right)^2-2a^2b^2\right]+2\left[\left(a-b\right)\left(a^4+b^4+a^3b^2+a^2b^3\right)\right]\) 

\(3\left[29^2-2\cdot4\right]+2\left\{5\left[\left(a^2+b^2\right)^2-2a^2b^2+ab\left(a^2+b^2\right)\right]\right\}\)

= 3\(\cdot833+10\left[29^2-2\cdot4+2\cdot29\right]\) \(=2499+10\cdot891=11409\)

 

pham tien dat
Xem chi tiết
Nguyễn Quốc Vinh
Xem chi tiết
Kiệt Nguyễn
13 tháng 1 2020 lúc 18:38

BĐT cần chứng minh tương đương với

\(\left(1-\frac{a^5-a^2}{a^5+b^2+c^2}\right)+\left(1-\frac{b^5-b^2}{b^5+c^2+a^2}\right)+\left(1-\frac{c^5-c^2}{c^5+a^2+b^2}\right)\le3\)

hay \(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)

Từ \(abc\ge1\) ta có:

\(\frac{1}{a^5+b^2+c^2}\le\frac{1}{\frac{a^5}{abc}+b^2+c^2}=\frac{1}{\frac{a^4}{bc}+b^2+c^2}\)

\(\le\frac{1}{\frac{2a^4}{b^2+c^2}+b^2+c^2}=\frac{b^2+c^2}{2a^4+\left(b^2+c^2\right)^2}\)

Do \(4u^2+v^2\ge4uv\Leftrightarrow4u^2+v^2\ge\frac{2}{3}\left(u+v\right)^2\)nên 

\(2a^4+\left(b^2+c^2\right)^2\ge\frac{2}{3}\left(a^2+b^2+c^2\right)^2\)

Suy ra \(\frac{1}{a^5+b^2+c^2}\le\frac{3\left(b^2+c^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)

Tương tự ta có \(\frac{1}{b^5+c^2+a^2}\le\frac{3\left(c^2+a^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)

và \(\frac{1}{c^5+a^2+b^2}\le\frac{3\left(a^2+b^2\right)}{2\left(a^2+b^2+c^2\right)^2}\)

Cộng ba vế của các BĐT trên ta được

\(\frac{1}{a^5+b^2+c^2}+\frac{1}{b^5+c^2+a^2}+\frac{1}{c^5+a^2+b^2}\le\frac{3}{a^2+b^2+c^2}\)

Vậy \(\frac{a^5-a^2}{a^5+b^2+c^2}+\frac{b^5-b^2}{b^5+c^2+a^2}+\frac{c^5-c^2}{c^5+a^2+b^2}\ge0\)

(Dấu "="\(\Leftrightarrow a=b=c=1\))

Khách vãng lai đã xóa
Nguyễn Minh Quân
Xem chi tiết
Huỳnh Thị Thanh Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 21:47

Bài 2: 

\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)

\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)

\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)

\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)

Hà Ngọc Linh
Xem chi tiết
TrầnHoàngGiang
Xem chi tiết
Nguyễn Ngọc Anh Minh
26 tháng 8 2023 lúc 7:47

a/

Nếu \(a\ge1\) => vế trái có tận cùng là 8 mà vế phải là 1 số chính phương.

Một số chính phương chỉ có tận cùng là 0;1;4;6;9

=> a=0

\(\Rightarrow5^0+323=b^2\Leftrightarrow18^2=b^2\Rightarrow b=18\)

b/

Nếu \(a\ge1\) => vế trái là 1 số chẵn mà VP= \(7^b\) chỉ có tận cùng là 1;3;7;9 là 1 số lẻ

\(\Rightarrow a=0\)

\(\Leftrightarrow2^0+342=7^b\Leftrightarrow7^3=7^b\Rightarrow b=3\)

c/

Nếu \(a\ge1\) => vế trái là 1 số chẵn mà VP= \(3^b\)  là 1 số lẻ => a=0

\(\Leftrightarrow2^0+80=3^b\Leftrightarrow3^4=3^b\Rightarrow b=4\)

d/

Nếu \(a\ge1\) => vế trái là 1 số lẻ mà VP là 1 số chẵn => a=0

\(\Leftrightarrow35^0+9=2.5^b\Rightarrow10=2.5^b\Leftrightarrow5^b=5\Rightarrow b=1\)

 

 

Duong
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2024 lúc 23:21

1: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=b\cdot k;c=d\cdot k\)

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

2: \(\dfrac{2a+b}{a-2b}=\dfrac{2\cdot bk+b}{bk-2b}=\dfrac{b\left(2k+1\right)}{b\left(k-2\right)}=\dfrac{2k+1}{k-2}\)

\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{d\left(2k+1\right)}{d\left(k-2\right)}=\dfrac{2k+1}{k-2}\)

Do đó: \(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)

3: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\cdot\left(k-1\right)}=\dfrac{k+1}{k-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)

Do đó: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)

4: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5\cdot bk+3b}{5dk+3d}=\dfrac{b\left(5k+3\right)}{d\left(5k+3\right)}=\dfrac{b}{d}\)

\(\dfrac{5a-3b}{5c-3d}=\dfrac{5\cdot bk-3b}{5\cdot dk-3d}=\dfrac{b\left(5k-3\right)}{d\left(5k-3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)