M=1+3+3^2+......+3^118+3^119 .
Hỏi M có chia hết cho 5 ko ? Vì sao
Giải thích nha , chiều nay mình nạp rồi
Cho biểu thức M=1+3+32+33+..........+3118+3119
a) Thu gọn biểu thức M
b) Cho biết biểu thức M có chia hết cho 5 và 13 không? Vì sao?
Cho biểu thức M=1+3+32+33+.............+3118+3119
a) Thu gọn biểu thức M
b) Biểu thức M có chia hết cho 5 và 13 không? Vì sao?
a) \(M=1+3+3^2+3^3+...+3^{119}\)
\(3M=3+3^2+3^3+3^4+...+3^{119}+3^{120}\)
\(3M-M=\left(3+3^2+3^3+...+3^{120}\right)-\left(1+3+3^2+...+3^{119}\right)\)
\(2M=3^{120}-1\)
\(M=\frac{3^{120}-1}{2}\)
b) \(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{117}+3^{118}+3^{119}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{117}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{117}\right)\)chia hết cho \(13\).
\(M=1+3+3^2+3^3+...+3^{118}+3^{119}\)
\(=\left(1+3+3^2+3^3\right)+...+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(=\left(1+3+3^2+3^3\right)+...+3^{116}\left(1+3+3^2+3^3\right)\)
\(=40\left(1+3^4+...+3^{116}\right)\)chia hết cho \(5\).
BT 1 :
1) CMR : A = 2^10+2^11+2^12 chia hết cho 7 .
2 ) Viết 7*32 thành tổng của 3 lũy thừa có cơ số 2 với các số mũ là 3 số tự nhiên liên tiếp .
BT 2 : Tính :
1 ) M=3/1/117 *1/119-4/117*5/118/119-5/117*119+8/39 .
2 ) N = x^15-8x^14+8x^13-8x^12+....+8x-5 với x=7 .
( 3/1/117 : 3 và 1/117 ; 5/118/119 : 5 và 118/119 nhá ! Giúp mình nha , mình cần lắm lun ) < , >
Bài 1:
a) A = 210+211+212
=210*(1+21+22)
=210*(1+2+4)
=7*210 chia hết 7
Đpcm
b)7*32=244
=32+64+128
=25+26+27
Bài 2:
a)ko hiểu đề
b)nhân N với * x như dạng lp 6 âý
M=1+3+3^2+...+3^119
a, tính M
b, M có chia hết cho 5,13 ko vì sao
1000.1000 chia hết cho 2 ;5 và 3 giải thích lý do
1053.200 chia hết cho 3 và 5 ko vì sao
có ai kb với mình ko ai kb với mình mình tick cho
à tớ quên chưa trả lời
1000,1000 chia hết cho 2, 5 ,3 vì máy tính bảo thế
1053,200 ko chia hết cho 3 và 5 vì bấm máy tính ko ra
tk mk nha bạn
Cho biểu thức : M = 1+3+2+33+......+3118+3119
a, Thu gọn biểu thức M
b, Biểu thức M có chia hết cho 5 , 13 ko?
a) M = 1 + 3 + 32 + ... + 3119
=> 3M = 3 + 32 + ... + 3120
=> 3M - M = 3 + 32 + ... + 3120 - ( 1 + 3 + 32 + ... + 3119)
=> 2M = 3 + 32 + ... + 3120 - 1 - 3 - 32 - 3119
=> 2M = 3120 - 1
=> M = \(\frac{3^{120}-1}{2}\)
b) M = 1 + 3 + 32 + ... + 3119
=> M = (1+3+32+33)+...+(3116+3117+3118+3119)
=> M = 40 + ... + 3116.(1+3+32+33)
=> M = 40 + ... + 3116.40
=> M = 40.(1+...+3116) \(⋮\)5 => M \(⋮\)5.
M = 1 + 3 + 32 + ... + 3119
=> M = (1+3+32) + ... + (3117+3118+3119)
=> M = (1+3+32) + ... + 3117.(1+3+32)
=> M = 13 + ... + 3117.13
=> M = 13.(1+...+3117) \(⋮\)13 => M \(⋮\)13
\(M=1+3+3^2+...+3^{119}\)
\(\Rightarrow3M=3+3^2+3^3+...+3^{120}\)
\(\Rightarrow2M=3^{120}-1\)
\(\Rightarrow M=\frac{3^{120}-1}{2}\)
M=1+3+3^2+......+3^118+3^119 . M cho chia hết cho 5 ko ?vì sao
Giải ra MÌNH ĐANG CẦN GẤP
\(M=1+3+3^2+...........+3^{118}+3^{119}\)
\(\Leftrightarrow M=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+..........+\left(3^{116}+3^{117}+3^{118}+3^{119}\right)\)
\(\Leftrightarrow M=40+3^4\left(1+3+3^2+3^3\right)+..........+3^{116}\left(1+3+3^2+3^3\right)\)
\(\Leftrightarrow M=40+3^4.40+...........+3^{116}.40\)
\(\Leftrightarrow M=40\left(1+3^4+.........+3^{116}\right)⋮5\)
\(\Leftrightarrow M⋮5\)
Nêu dấu hiệu chia hết cho 2,3,5,9
áp dụng : số 134 có chia hết cho 2 không ? có chia hết cho 5 không ? giải thích vì sao
số 114 có chia hết cho 3 không ? có chia hết cho 9 không ? giải thích vì sao
số 180 có chia hết cho 2 không ? có chia hết cho 3 không ? có chia hết cho 5 không ? có chia hết cho 9 không ? giải thích vì sao
ai làm nhanh mình tick cho
Dấu hiệu chia hết cho 2: Các chữ số tận cùng là : 0;2;4;6;8 thì chia hết cho 2. Hoặc: Các số chẵn thì chia hết cho 2.
Dấu hiệu chia hết cho 5: Các số có tận cùng là 0 hoặc 5 thì chia hết cho 5.
Là các số có tổng các chữ số chia hết cho 3 thì số đó chia hết cho 3.
Các số có tổng các chữ số chia hết cho 9 thì chia hết cho 9.
dấu hiệu chia hết ch 2 3 5 9 là có tổng chia hết cho 9 và có số cuối là 0
134 chia hết cho2 vì có số cuối là số chẵn và 134 ko chia hết cho 5 vì ko có số cuối là 5 vá 0
114 chia hết cho3 vì có tổng chia hết cho3 và ko chi hết cho 9 vì 114 ko có tổng chia hết cho 9
180 chia hết cho2 5 3 9 vì là có tổng chia hết cho 9 và3 có số cuối là 0
Tìm giá trị của x để thõa mãn điều kiện :
1: Cho A = 3 + 32 + 33 + 34 + .... + 3100
Tìm số tự nhiên n biết rằng 2A +3 = 3n
2: Cho M = 3 + 32 + 33 + 34 + ... + 3100
Hỏi :
a) M có chia hết cho 4 , cho 12 không ? vì sao ?
b) Tìm số tự nhiên n biết rằng 2M + 3 = 3n
3: Cho biểu thức : M = 1 + 3 + 32 + 33 +...+ 3118 + 3119
a) Thu gọn biểu thức M
b) Biểu thức M có chia hết cho 5 , cho 13 không ? vì sao?
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
Nguyễn Duy Long sai rồi
phải thêm là:Mặt khác 12=3.4 và 3 và 4 là hai số nguyên tố cùng nhau (3)
Từ (1);(2) và (3) suy ra M chia hết cho 12
NHỚ TK MÌNH NHA ĐẢM BẢO ĐÚNG 100% LUÔN ĐÓ