tìm gtln hoặc gtnn: a,p= 3.|2x-y|+2\(\sqrt{x-3}\) b,n=-4\(\sqrt{6}\) -3x-7 c,h=4(x-2y)\(^8\) = 2\(\sqrt{y+2+3}\) d,s= ,\(\dfrac{-7}{3\sqrt{ }x-4+2\left(x-3y^{ }\right)^{ }4+2}+3\)
Tìm GTNN hoặc GTLN của:
a) A=|2x-1|-4 (GTLN)
b) B = 1,5-|2-x| (GTLN)
c) C = |x-3|(GTNN)
d)D = 10-4|x-2|(GTLN)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
Tìm GTLN hoặc GTNN: A= |-x +8|-21
\(A=\left|-x+8\right|-21\)
Vì \(\left|-x+8\right|\le0\forall x\)
\(A=\left|-x+8\right|-21\ge21\)
\(\Rightarrow A_{max}=-21\)khi \(\left|-x+8\right|=0\Rightarrow-x+8=0\Rightarrow-x=-8\Rightarrow x=8\)
Vậy với Amin = -21 khi x = 8
\(A=\left|-x+8\right|-21\)
Vì \(\left|-x+8\right|\ge0\forall x\)
\(\Rightarrow A\ge-21\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow-x+8=0\Leftrightarrow x=8\)
Vậy....
Tìm GTLN hoặc GTNN A=x-x^2+1/2
\(A=x-x^2+\frac{1}{2}\)
\(\Leftrightarrow A=-\left(x^2-x-\frac{1}{2}\right)\)
\(\Leftrightarrow A=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{3}{4}\right)\)
\(\Leftrightarrow A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]\)
Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\)nên \(A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]\le\frac{3}{4}\)
Vậy \(A_{min}=\frac{3}{4}\)(Dấu "="\(\Leftrightarrow x=\frac{1}{2}\))
Tìm GTNN hoặc GTLN của A= 2x^2- 6x- 1
Tính GTLN , GTNN: a, A=2x2-6x. b,B=x2+y2-x+6y+10. c,C=x-x2 .... 1, tìm x : a) (x+2).(x+3)-(x-2).(x+5)=0. b) (2x+3).(x-4)+(x-5).(x-2)=(x-4).(3x-5). c) (3x-5). ... Viết các biểu thức dưới dạng bình phương của một tổng hoặc hiệu:.
A = 2x2 - 6x - 1
A = 2 . ( x2 - 3x - 1 / 2 )
A = 2 . [ ( x2 - 2 . x . 3 / 2 + ( 3 / 2 )2 - ( 3 / 2 )2 - 1 / 2 ) ]
A = 2 . [ ( x - 3 / 2 )2 - 11 / 4 ]
A = ( x - 3 / 2 )2 - 11 / 2 \(\ge\)11 / 2
Dấu " = " xảy ra \(\Leftrightarrow\)x - 3 / 2 = 0
\(\Rightarrow\)x = 3 / 2
Min A = 11 / 2 \(\Leftrightarrow\)x = 3 / 2
Ta có: A = 2x2 - 6x - 1 = 2(x2 - 3x + 9/4) - 11/2 = 2(x - 3/2)2 - 11/2
Do 2(x - 3/2)2 \(\ge\)0 \(\forall\)x => 2(x - 3/2)2 - 11/2 \(\ge\)-11/2 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy MinA = -11/2 <=> x = 3/2
Tìm GTNN hoặc GTLN
A=|2004-x|+|2003-x|
Bài giải
Ta có :
\(A=\left|2004-x\right|+\left|2003-x\right|=\left|2004-x\right|+\left|x-2003\right|\ge\left|2004-x+x-2003\right|=\left|1\right|=1\)
Dấu " = " xảy ra khi :
\(\left(2004-x\right)\left(x-2003\right)\ge0\)
TH1 : \(\hept{\begin{cases}2004-x\ge0\\x-2003\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x\le2004\\x\ge2003\end{cases}}\) \(\Rightarrow\text{ }2003\le x\le2004\)
TH2 : \(\hept{\begin{cases}2004-x< 0\\x-2003< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>2004\\x< 2003\end{cases}}\)( Loại )
\(\Rightarrow\text{ Min A }=1\text{ khi }2003\le x\le2004\)
TÌM GTLN hoặc GTNN
A= |x-2018| - |x-2019|
\(A=|x-2018|-|x-2019|\ge|x-2018-x-2019|=|-1|=1\)
tìm gtln hoặc gtnn của A= 2021-x/11-x
\(A=\dfrac{2021-x}{11-x}=\dfrac{11-x+2010}{11-x}=\dfrac{11-x}{11-x}+\dfrac{2010}{11-x}=1+\dfrac{2010}{11-x}\)
Để A đạt GTNN thì \(\dfrac{2010}{11-x}\) nhỏ nhất
\(\Rightarrow11-x=2010\Leftrightarrow x=-1999\)
Khi đó \(A=2\)
Để A đạt GTLN thì \(\dfrac{2010}{11-x}\) lớn nhất
\(\Rightarrow11-x=1\Leftrightarrow x=10\)
Khi đó \(A=2011\)
Vậy \(Min_A=2\) khi \(x=-1999\) và \(Max_A=2011\) khi \(x=10\)
Tìm GTNN hoặc GTLN của:
A= (x+9) : (x-7)
Tìm GTNN hoặc GTLN của
A=1-2x-3x^2
tìm GTLN hoặc GTNN:\(A=6x+x^2\)
\(A=\left(x^2+6x+9\right)-9\)
\(=\left(x+3\right)^2-9\)
\(\Rightarrow A\ge-9\)
Dấu = xảy ra khi\(x+3=0\Rightarrow x=-3\)